speech naturalness
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 8)

H-INDEX

20
(FIVE YEARS 0)

NeuroImage ◽  
2021 ◽  
pp. 118811
Author(s):  
Laura V. Cuaya ◽  
Raúl Hernández-Pérez ◽  
Marianna Boros ◽  
Andrea Deme ◽  
Attila Andics

2020 ◽  
Vol 63 (7) ◽  
pp. 2054-2069
Author(s):  
Brandon Merritt ◽  
Tessa Bent

Purpose The purpose of this study was to investigate how speech naturalness relates to masculinity–femininity and gender identification (accuracy and reaction time) for cisgender male and female speakers as well as transmasculine and transfeminine speakers. Method Stimuli included spontaneous speech samples from 20 speakers who are transgender (10 transmasculine and 10 transfeminine) and 20 speakers who are cisgender (10 male and 10 female). Fifty-two listeners completed three tasks: a two-alternative forced-choice gender identification task, a speech naturalness rating task, and a masculinity/femininity rating task. Results Transfeminine and transmasculine speakers were rated as significantly less natural sounding than cisgender speakers. Speakers rated as less natural took longer to identify and were identified less accurately in the gender identification task; furthermore, they were rated as less prototypically masculine/feminine. Conclusions Perceptual speech naturalness for both transfeminine and transmasculine speakers is strongly associated with gender cues in spontaneous speech. Training to align a speaker's voice with their gender identity may concurrently improve perceptual speech naturalness. Supplemental Material https://doi.org/10.23641/asha.12543158


2020 ◽  
Vol 31 (01) ◽  
pp. 017-029
Author(s):  
Paul Reinhart ◽  
Pavel Zahorik ◽  
Pamela Souza

AbstractDigital noise reduction (DNR) processing is used in hearing aids to enhance perception in noise by classifying and suppressing the noise acoustics. However, the efficacy of DNR processing is not known under reverberant conditions where the speech-in-noise acoustics are further degraded by reverberation.The purpose of this study was to investigate acoustic and perceptual effects of DNR processing across a range of reverberant conditions for individuals with hearing impairment.This study used an experimental design to investigate the effects of varying reverberation on speech-in-noise processed with DNR.Twenty-six listeners with mild-to-moderate sensorineural hearing impairment participated in the study.Speech stimuli were combined with unmodulated broadband noise at several signal-to-noise ratios (SNRs). A range of reverberant conditions with realistic parameters were simulated, as well as an anechoic control condition without reverberation. Reverberant speech-in-noise signals were processed using a spectral subtraction DNR simulation. Signals were acoustically analyzed using a phase inversion technique to quantify improvement in SNR as a result of DNR processing. Sentence intelligibility and subjective ratings of listening effort, speech naturalness, and background noise comfort were examined with and without DNR processing across the conditions.Improvement in SNR was greatest in the anechoic control condition and decreased as the ratio of direct to reverberant energy decreased. There was no significant effect of DNR processing on speech intelligibility in the anechoic control condition, but there was a significant decrease in speech intelligibility with DNR processing in all of the reverberant conditions. Subjectively, listeners reported greater listening effort and lower speech naturalness with DNR processing in some of the reverberant conditions. Listeners reported higher background noise comfort with DNR processing only in the anechoic control condition.Results suggest that reverberation affects DNR processing using a spectral subtraction algorithm in such a way that decreases the ability of DNR to reduce noise without distorting the speech acoustics. Overall, DNR processing may be most beneficial in environments with little reverberation and that the use of DNR processing in highly reverberant environments may actually produce adverse perceptual effects. Further research is warranted using commercial hearing aids in realistic reverberant environments.


Sign in / Sign up

Export Citation Format

Share Document