k1 toxin
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Stefanie Gier ◽  
Martin Simon ◽  
Gilles Gasparoni ◽  
Salem Khalifa ◽  
Marcel H. Schulz ◽  
...  

ABSTRACT The killer phenomenon in yeast (Saccharomyces cerevisiae) not only provides the opportunity to study host-virus interactions in a eukaryotic model but also represents a powerful tool to analyze potential coadaptional events and the role of killer yeast in biological diversity. Although undoubtedly having a crucial impact on the abundance and expression of the killer phenotype in killer-yeast harboring communities, the influence of a particular toxin on its producing host cell has not been addressed sufficiently. In this study, we describe a model system of two K1 killer yeast strains with distinct phenotypical differences pointing to substantial selection pressure in response to the toxin secretion level. Transcriptome and lipidome analyses revealed specific and intrinsic host cell adaptions dependent on the amount of K1 toxin produced. High basal expression of genes coding for osmoprotectants and stress-responsive proteins in a killer yeast strain secreting larger amounts of active K1 toxin implies a generally increased stress tolerance. Moreover, the data suggest that immunity of the host cell against its own toxin is essential for the balanced virus-host interplay providing valuable hints to elucidate the molecular mechanisms underlying K1 immunity and implicating an evolutionarily conserved role for toxin immunity in natural yeast populations. IMPORTANCE The killer phenotype in Saccharomyces cerevisiae relies on the cytoplasmic persistence of two RNA viruses. In contrast to bacterial toxin producers, killer yeasts necessitate a specific immunity mechanism against their own toxin because they bear the same receptor populations as sensitive cells. Although the killer phenomenon is highly abundant and has a crucial impact on the structure of yeast communities, the influence of a particular toxin on its host cell has been barely addressed. In our study, we used two derivatives secreting different amount of the killer toxin K1 to analyze potential coadaptional events in this particular host/virus system. Our data underline the dependency of the host cell’s ability to cope with extracellular toxin molecules and intracellular K1 molecules provided by the virus. Therefore, this research significantly advances the current understanding of the evolutionarily conserved role of this molecular machinery as an intrinsic selection pressure in yeast populations.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 70 ◽  
Author(s):  
Angela Crabtree ◽  
Emily Kizer ◽  
Samuel Hunter ◽  
James Van Leuven ◽  
Daniel New ◽  
...  

Mycoviruses infect a large number of diverse fungal species, but considering their prevalence, relatively few high-quality genome sequences have been determined. Many mycoviruses have linear double-stranded RNA genomes, which makes it technically challenging to ascertain their nucleotide sequence using conventional sequencing methods. Different specialist methodologies have been developed for the extraction of double-stranded RNAs from fungi and the subsequent synthesis of cDNAs for cloning and sequencing. However, these methods are often labor-intensive, time-consuming, and can require several days to produce cDNAs from double-stranded RNAs. Here, we describe a comprehensive method for the rapid extraction and sequencing of dsRNAs derived from yeasts, using short-read next generation sequencing. This method optimizes the extraction of high-quality double-stranded RNAs from yeasts and 3′ polyadenylation for the initiation of cDNA synthesis for next-generation sequencing. We have used this method to determine the sequence of two mycoviruses and a double-stranded RNA satellite present within a single strain of the model yeast Saccharomyces cerevisiae. The quality and depth of coverage was sufficient to detect fixed and polymorphic mutations within viral populations extracted from a clonal yeast population. This method was also able to identify two fixed mutations within the alpha-domain of a variant K1 killer toxin encoded on a satellite double-stranded RNA. Relative to the canonical K1 toxin, these newly reported mutations increased the cytotoxicity of the K1 toxin against a specific species of yeast.


1986 ◽  
Vol 6 (12) ◽  
pp. 4274-4280 ◽  
Author(s):  
S J Lolle ◽  
H Bussey

A full-length cDNA of the M1 double-stranded RNA killer preprotoxin coding region successfully directed the synthesis of secreted K1 toxin when expressed in Saccharomyces cerevisiae from a plasmid vector. Three protein species immunoreactive with antitoxin antiserum were detected intracellularly in transformants harboring this killer cDNA plasmid. These toxin precursor species were characterized by using secretory-defective hosts, by comparative electrophoretic mobilities, and by tunicamycin susceptibility. Such studies indicate that these three protein species represent intermediates generated by signal cleavage of the preprotoxin and its subsequent glycosylation and provide evidence that these events occur posttranslationally.


1986 ◽  
Vol 6 (12) ◽  
pp. 4274-4280
Author(s):  
S J Lolle ◽  
H Bussey

A full-length cDNA of the M1 double-stranded RNA killer preprotoxin coding region successfully directed the synthesis of secreted K1 toxin when expressed in Saccharomyces cerevisiae from a plasmid vector. Three protein species immunoreactive with antitoxin antiserum were detected intracellularly in transformants harboring this killer cDNA plasmid. These toxin precursor species were characterized by using secretory-defective hosts, by comparative electrophoretic mobilities, and by tunicamycin susceptibility. Such studies indicate that these three protein species represent intermediates generated by signal cleavage of the preprotoxin and its subsequent glycosylation and provide evidence that these events occur posttranslationally.


Sign in / Sign up

Export Citation Format

Share Document