Author(s):  
Antti J. Harju ◽  
Jouko Mickelsson

AbstractTwisted K-theory on a manifold X, with twisting in the 3rd integral cohomology, is discussed in the case when X is a product of a circle and a manifold M. The twist is assumed to be decomposable as a cup product of the basic integral one form on and an integral class in H2(M,ℤ). This case was studied some time ago by V. Mathai, R. Melrose, and I.M. Singer. Our aim is to give an explicit construction for the twisted K-theory classes using a quantum field theory model, in the same spirit as the supersymmetric Wess-Zumino-Witten model is used for constructing (equivariant) twisted K-theory classes on compact Lie groups.


2018 ◽  
Vol 30 (5) ◽  
pp. 1157-1162 ◽  
Author(s):  
Michelle Bucher ◽  
Nicolas Monod

AbstractWe prove the vanishing of the cup product of the bounded cohomology classes associated to any two Brooks quasimorphisms on the free group. This is a consequence of the vanishing of the square of a universal class for tree automorphism groups.


Author(s):  
María Julia Redondo ◽  
Lucrecia Román

We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution $\operatorname{\mathbb{Bar}} A$ and Bardzell's resolution $\operatorname{\mathbb{Ap}} A$; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $\operatorname{HH} ^*(A)$ and the second one has been shown to be an efficient tool for computation of these cohomology groups. The constructed comparison morphisms allow us to show that the cup product restricted to even degrees of the Hochschild cohomology has a very simple description. Moreover, for $A= \mathbb{k} Q/I$ a monomial algebra such that $\dim_ \mathbb{k} e_i A e_j = 1$ whenever there exists an arrow $\alpha: i \to j \in Q_1$, we describe the Lie action of the Lie algebra $\operatorname{HH}^1(A)$ on $\operatorname{HH}^{\ast} (A)$.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 469-474 ◽  
Author(s):  
Norman Blackburn

Magnus [4] proved the following theorem. Suppose that F is free group and that X is a basis of F. Let R be a normal subgroup of F and write G = F/R. Then there is a monomorphism of F/R′ in which ; here the tx are independent parameters permutable with all elements of G. Later investigations [1, 3] have shown what elements can appear in the south-west corner of these 2 × 2 matrices. In this form the theorem subsequently reappeared in proofs of the cup-product reduction theorem of Eilenberg and MacLane (cf. [7, 8]). In this note a direct group-theoretical proof of the theorems will be given.


2018 ◽  
Vol 28 (03) ◽  
pp. 365-380 ◽  
Author(s):  
Daciberg Lima Gonçalves ◽  
Sérgio Tadao Martins

Let [Formula: see text] be the fundamental group of a sapphire that admits the Sol geometry and is not a torus bundle. We determine a finite free resolution of [Formula: see text] over [Formula: see text] and calculate a partial diagonal approximation for this resolution. We also compute the cohomology rings [Formula: see text] for [Formula: see text] and [Formula: see text] for an odd prime [Formula: see text], and indicate how to compute the groups [Formula: see text] and the multiplicative structure given by the cup product for any system of coefficients [Formula: see text].


2014 ◽  
Vol 25 (04) ◽  
pp. 1450036 ◽  
Author(s):  
Nathan Grieve

We study questions surrounding cup-product maps which arise from pairs of non-degenerate line bundles on an abelian variety. Important to our work is Mumford's index theorem which we use to prove that non-degenerate line bundles exhibit positivity analogous to that of ample line bundles. As an application we determine the asymptotic behavior of families of cup-product maps and prove that vector bundles associated to these families are asymptotically globally generated. To illustrate our results we provide several examples. For instance, we construct families of cup-product problems which result in a zero map on a one-dimensional locus. We also prove that the hypothesis of our results can be satisfied, in all possible instances, by a particular class of simple abelian varieties. Finally, we discuss the extent to which Mumford's theta groups are applicable in our more general setting.


Author(s):  
María Julia Redondo ◽  
Lucrecia Román

We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution $\operatorname{\mathbb{Bar}} A$ and Bardzell's resolution $\operatorname{\mathbb{Ap}} A$; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $\operatorname{HH} ^*(A)$ and the second one has been shown to be an efficient tool for computation of these cohomology groups. The constructed comparison morphisms allow us to show that the cup product restricted to even degrees of the Hochschild cohomology has a very simple description. Moreover, for $A= \mathbb{k} Q/I$ a monomial algebra such that $\dim_ \mathbb{k} e_i A e_j = 1$ whenever there exists an arrow $\alpha: i \to j \in Q_1$, we describe the Lie action of the Lie algebra $\operatorname{HH}^1(A)$ on $\operatorname{HH}^{\ast} (A)$.


Sign in / Sign up

Export Citation Format

Share Document