surface wakes
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2342
Author(s):  
Hao-Che Ho ◽  
Ying-Tien Lin ◽  
Marian Muste

This paper introduces an image analysis technique applied to an artificially-created disturbance at the free surface of a moving water body as a means of quantifying the average velocity of the water stream for shallow flows. The disturbance was created by a thin object penetrating the free surface with different submerged distances. A V-shaped wake pattern was created by the object of interest through its variation with the water body velocity, the submergence and shape of the piercing body. The angle of the wake pattern decreased with the increase of the velocity for a depth-based Froude number ranging from 0.15 to 0.96. The proof-of-concept experiments presented in this paper, therefore, are usable to quantify the velocity based on the wake angle only in subcritical flow conditions. The results showed the shape of the wake was only slightly influenced by the shape of the object geometry and its submergence. Observations on various types of surface wakes have been documented before, but it is the conversion of these observations into a relatively inexpensive and robust method to estimate the velocity of the moving body that is deemed innovative.


Author(s):  
Douglas A. Potts ◽  
Jonathan R. Binns ◽  
Hayden Marcollo ◽  
Andrew E. Potts

Abstract This project investigates a cantilevered cylinder projecting down into the water column moving at high velocity through still water, as is applicable to submarine masts. Surface-piercing cylinders differ from fully submerged cylinders due to the generation of surface wakes and under increasing flow speeds the formation of a ventilated pocket in the lee of the cylinder, both of which grow with increasing velocity, with concomitant effects on the hydrodynamic loading. The relative length of submergence, or immersed aspect ratio (L/D) and end conditions of the cylinder with respect to tip vortex drag effects may also impact the hydrodynamic loads and wake formation. Laboratory testing of surface-piercing cylinders to date has predominantly been confined to characterising the wakes shed from a rigid cylinder cantilevered down into the water from a towing tank carriage, which under certain test conditions will also exhibit significant Vortex-Induced-Vibration (VIV), though not adequately identified and accounted for in its magnification of drag and wake.


Sign in / Sign up

Export Citation Format

Share Document