hydrodynamic loading
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6417
Author(s):  
Amy Robertson ◽  
Lu Wang

A new validation campaign was conducted at the W2 Harold Alfond Ocean Engineering Laboratory at the University of Maine to investigate the hydrodynamic loading on floating offshore wind substructures, with a focus on the low-frequency contributions that tend to drive extreme and fatigue loading in semisubmersible designs. A component-level approach was taken to examine the hydrodynamic loads on individual parts of the semisubmersible in isolation and then in the presence of other members to assess the change in hydrodynamic loading. A variety of wave conditions were investigated, including bichromatic waves, to provide a direct assessment of difference-frequency wave loading. An assessment of the impact of wave uncertainty on the loading was performed, with the goal of enabling validation with this dataset of numerical models with different levels of fidelity. The dataset is openly available for public use and can be downloaded from the U.S. Department of Energy Data Archive and Portal.


2021 ◽  
pp. 30-37
Author(s):  
Aarushi Tiwari

Although biologging tags, which are externally attached sensor packages deployed on marine animals, have become essential conservation tools, a core issue with current tag designs is that they are rarely tested for hydrodynamics and may generate substantial hydrodynamic loading (drag and lift forces) on animals. This may cause tags to impede animal physiology, give rise to injuries at the site of attachment, and cause tags to relay unrepresentative data. This study aims to design a new biologging tag form that houses the DTAG3 electronics and reduces the total drag and lift induced on marine animals. One starting model (GPS Phone Tag referred to as Model 0), three iterations, and the final design (Model D), were constructed using CAD software. They were tested with Computational Fluid Dynamics (CFD) simulations to obtain and analyze the drag and lift force. All models were tested at speeds between 1-5 m/s, with 400 trials. The Model D includes a narrow elliptical shape to maintain laminar boundary layers, a pointed tail shape to avoid flow separation, canards for frontal downforce, tabs to reduce form drag, streamlined hydrophones, and dimples to delay flow separation. The CFD simulation results demonstrated that Model D reduced drag by up to 56% and lift by upto 86% compared to Model 0. These results show the potential benefit of this design in reducing the impact of biologging tags on the behavior and energetics of marine animals, and in providing an unbiased and holistic view of the animal behavior for conservation management actions.


2021 ◽  
Vol 9 (6) ◽  
pp. 598
Author(s):  
Antoine Marty ◽  
Franck Schoefs ◽  
Thomas Soulard ◽  
Christian Berhault ◽  
Jean-Valery Facq ◽  
...  

After a few weeks, underwater components of offshore structures are colonized by marine species and after few years this marine growth can be significant. It has been shown that it affects the hydrodynamic loading of cylinder components such as legs and braces for jackets, risers and mooring lines for floating units. Over a decade, the development of Floating Offshore Wind Turbines highlighted specific effects due to the smaller size of their components. The effect of the roughness of hard marine growth on cylinders with smaller diameter increased and the shape should be representative of a real pattern. This paper first describes the two realistic shapes of a mature colonization by mussels and then presents the tests of these roughnesses in a hydrodynamic tank where three conditions are analyzed: current, wave and current with wave. Results are compared to the literature with a similar roughness and other shapes. The results highlight the fact that, for these realistic roughnesses, the behavior of the rough cylinders is mainly governed by the flow and not by their motions.


Author(s):  
Jennifer L. Irish ◽  
Robert Weiss ◽  
Beverly Goodman-Tchernov

Robust planning, engineering, and design in regions exposed to coastal inundation and wave extremes are critically important for ensuring economic and community resilience. To address this need, the profession is moving toward multi-faceted, risk-based approaches based on probabilistic hazard exposure that account for uncertainty. Herein, a Monte-Carlo model for sliding and overturning of caissons under extreme hydrodynamic loading is presented. The model may be used to support risk-based analyses during caisson design as well as in the characterization of inundation extremes from contemporary hazard reconnaissance and from the geological and archaeological records. Herein, model applications are presented (1) to characterize the 2nd century AD Mediterranean tsunami that damaged the ancient harbor of Caesarea, Israel and (2) to develop a scaling law for overturning.


Author(s):  
Behnaz Ghodoosipour ◽  
Tomoyuki Takabatake ◽  
Ioan Nistor ◽  
Majid Mohammadian ◽  
Go Hamano ◽  
...  

Extreme events such as tsunamis and floods have caused massive damaging consequences to nearshore infrastructures. This has been more significant recently due to a changing climate. Transmission pipelines are among such infrastructures and need to be protected against potential extreme events. Design of pipelines requires comprehensive understanding of the exerting hydrodynamic forces. Such pipelines are often placed on sloping beds in coastal areas. Therefore, to address the uncertainties and parameters involved in extreme hydrodynamic loading on pipelines near sloping bed, an experimental program was conducted at the hydraulic laboratory in WASEDA University, Tokyo, Japan. This study is a complement of another experimental research conducted by Ghodoosipour et al., 2019a and b to investigate loadings from tsunami-like dam-break waves on pipelines located on flat bed.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/y6nSfe34SAw


Author(s):  
David Fernández-Gutiérrez ◽  
Wim M. van Rees

Abstract Ray-finned fish swim by flapping their fins, which are composed of bony rays connected by an inextensible membrane. Throughout the flapping cycle, the fins typically undergo both ‘passive’ deformation due to hydrodynamic loading, and ‘active’ deformation arising from internal musculature deforming the fin against the flow. To systematically analyze the impact of fin shape on hydrodynamic performance, a parametric definition of the fin geometry and its modes of deformation is required, consistent with the fin’s material and mechanical properties. In this paper we present a model and algorithm to determine the fin shape corresponding to an arbitrary out-of-plane curvature distribution for each ray. The shape is computed by iteratively enforcing constraints corresponding to membrane inextensibility, and negligible torsional stiffness of the rays. Based on this model, we present a low-order parametrization of fin shapes that capture the predominant deformation modes due to combined hydrodynamic loading and intrinsic actuation, as compared to experimental observations. To demonstrate the model’s ability to provide insight into the effect of curvature on hydrodynamic fin performance, we integrate our algorithm into a 3D Navier-Stokes solver Using this framework, we present initial results on the cycle-averaged thrust coefficient of a passively and actively deforming generalized trapezoidal caudal fin model at Reynolds number 1500 and Strouhal number 0.3. The results demonstrate that our model, algorithm, and integration with the flow solver form a useful framework to understand the effect of 3D curvature on hydrodynamic performance of flapping fins.


2020 ◽  
Vol 3 (3) ◽  
pp. 189-204
Author(s):  
Darin Majnarić ◽  
Albert Zamarin

This paper presents results from numerical analysis of the fluid and structure interaction of two different hydrofoil models, Model 1 and Model 2. Analyzes were performed with stainless steel, aluminium and composite materials for Model 1, and Model 2 was created from composite with aluminium reinforcement. Models were analyzed for three different angles of attack (10, 20, 30 degrees) and for each angle three different speeds were tested (2, 4, 6 m/s). At first, the whole set of analysis was run for entirely submerged hydrofoils and later on for immersed hydrofoils to the draft h. Described numerical analysis was performed in order to adjust stiffens of hydrofoils based on different operational loads. Two-way fluid-structure interaction analysis was used which combines FEM and CFD solvers. Presented results are based on 44 analysis with which all planned conditions of hydrofoil operation were tested. Numerical analysis showed a correlation between stiffens of material i.e. structural response and hydrodynamic loading. Besides mentioned, based on analysis of Model 2 future prediction are given in a way of hydrofoil design or particularly placement for hydrofoils reinforcement.


Sign in / Sign up

Export Citation Format

Share Document