balancing transformation
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2013 ◽  
Vol 11 (4) ◽  
pp. 2-16
Author(s):  
K. Perev

Abstract This paper considers the problem of orthogonal polynomial approximation based balanced truncation for a lowpass filter. The proposed method combines the system properties of balanced truncation, the computational effectiveness of proper orthogonal decomposition and the approximation capability of the orthogonal polynomials approximation. Orthogonal polynomials series expansion of the reachability and observability gramians is used in order to avoid solving large-scale Lyapunov equations and thus, significantly reducing the computational effort for obtaining the balancing transformation. The proposed method is applied for model reduction of a lowpass analog filter. Different sets of orthonormal functions are obtained from Legendre, Laguerre and Chebyshev orthogonal polynomials and the corresponding reduced order models are compared. The approximation precision is measured by the relative mean square error between the outputs of the full order model and the obtained reduced order models.


2010 ◽  
Vol 2010 ◽  
pp. 1-20
Author(s):  
Nada Ratković Kovačević ◽  
Dobrila Škatarić

A new approach in multimodeling strategy is proposed. Multimodel strategies in which control agents use different simplified models of the same system are being developed using balancing transformation and the corresponding order reduction concepts. Traditionally, the multimodeling concept was studied using the ideas of multitime scales (singular perturbations) and weak subsystem coupling. For all reduced-order models obtained, a Linear Quadratic Gaussian (LQG) control problem was solved. Different order reduction techniques were compared based on the values of the optimized criteria for the closed-loop case where the full-order balanced model utilizes regulators calculated to be the optimal for various reduced-order models. The results obtained were demonstrated on a real-world example: a multiarea power system consisting of two identical areas, that is, two identical power plants.


Author(s):  
Yoram Halevi

Abstract A method of approximating the controllability gramian, observability gramian and the balancing transformation for lightly damped mechanical systems is presented, the approximation uses the special structure of the system and the fact that the damping is small to reduce the amount of computation considerably. Furthermore, one can avoid the calculation of the entire balancing transformation matrix and calculate only the parts that are required for order reduction. In cases where the reduced order is much smaller than the original that leads to another substantial reduction of computation effort.


Sign in / Sign up

Export Citation Format

Share Document