video traffic
Recently Published Documents


TOTAL DOCUMENTS

595
(FIVE YEARS 68)

H-INDEX

27
(FIVE YEARS 1)

Author(s):  
Khandu Om ◽  
Tanya McGill ◽  
Michael Dixon ◽  
Kok Wai Wong ◽  
Polychronis Koutsakis

Author(s):  
Diego Jesus Serrano-Carrasco ◽  
Antonio Jesus Diaz-Honrubia ◽  
Pedro Cuenca

AbstractWith the advent of smartphones and tablets, video traffic on the Internet has increased enormously. With this in mind, in 2013 the High Efficiency Video Coding (HEVC) standard was released with the aim of reducing the bit rate (at the same quality) by 50% with respect to its predecessor. However, new contents with greater resolutions and requirements appear every day, making it necessary to further reduce the bit rate. Perceptual video coding has recently been recognized as a promising approach to achieving high-performance video compression and eye tracking data can be used to create and verify these models. In this paper, we present a new algorithm for the bit rate reduction of screen recorded sequences based on the visual perception of videos. An eye tracking system is used during the recording to locate the fixation point of the viewer. Then, the area around that point is encoded with the base quantization parameter (QP) value, which increases when moving away from it. The results show that up to 31.3% of the bit rate may be saved when compared with the original HEVC-encoded sequence, without a significant impact on the perceived quality.


Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 320
Author(s):  
Héctor Migallón ◽  
Otoniel López-Granado ◽  
Miguel O. Martínez-Rach ◽  
Vicente Galiano ◽  
Manuel P. Malumbres

The proportion of video traffic on the internet is expected to reach 82% by 2022, mainly due to the increasing number of consumers and the emergence of new video formats with more demanding features (depth, resolution, multiview, 360, etc.). Efforts are therefore being made to constantly improve video compression standards to minimize the necessary bandwidth while retaining high video quality levels. In this context, the Joint Collaborative Team on Video Coding has been analyzing new video coding technologies to improve the compression efficiency with respect to the HEVC video coding standard. A software package known as the Joint Exploration Test Model has been proposed to implement and evaluate new video coding tools. In this work, we present parallel versions of the JEM encoder that are particularly suited for shared memory platforms, and can significantly reduce its huge computational complexity. The proposed parallel algorithms are shown to achieve high levels of parallel efficiency. In particular, in the All Intra coding mode, the best of our proposed parallel versions achieves an average efficiency value of 93.4%. They also had high levels of scalability, as shown by the inclusion of an automatic load balancing mechanism.


Author(s):  
Luis Miguel Castañeda Herrera ◽  
Wilmar Yesid Campo-Muñoz ◽  
Alejandra Duque Torres

It is well known that video streaming is the major network traffic today. Futhermore, the traffic generated by video streaming is expected to increase exponentially. On the other hand, SoftwareDefined Networking (SDN) has been considered a viable solution to cope with the complexity and increasing network traffic due to its centralised control and programmability features. These features, however, do not guarantee that network performance will not suffer as traffic grows. As result, understanding video traffic and optimising video traffic can aid in control various aspects of network performance, such as bandwidth utilisation, dynamic routing, and Quality of Service (QoS). This paper presents an approach to identify video streaming traffic in SDN and investigates the feasibility of using Knowledge-Defined Networking (KDN) in traffic classification. KDN is a networking paradigm that takes advantage of Artificial Intelligence (AI) by using Machine Learning approaches, which allows integrating behavioural models to detect patterns, like video streaming traffic identification, in SDN traffic. In our initial proof-of-concept, we derive the relevant information of network traffic in the form of flows statistics. Then, we used such information to train six ML models that can classify network traffic into three types, Video on Demand (VoD), Livestream, and no-video traffic. Our proof-of-concept demonstrates that our approach is applicable and that we can identify and classify video streaming traffic with 97.5% accuracy using the Decision Tree model.


Author(s):  
Mohamad I. Elhadad ◽  
Walid El‐Shafai ◽  
El‐Sayed M. El‐Rabaie ◽  
Mohammed Abd‐Elnaby ◽  
Fathi E. Abd El‐Samie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document