scholarly journals Video Compression for Screen Recorded Sequences Following Eye Movements

Author(s):  
Diego Jesus Serrano-Carrasco ◽  
Antonio Jesus Diaz-Honrubia ◽  
Pedro Cuenca

AbstractWith the advent of smartphones and tablets, video traffic on the Internet has increased enormously. With this in mind, in 2013 the High Efficiency Video Coding (HEVC) standard was released with the aim of reducing the bit rate (at the same quality) by 50% with respect to its predecessor. However, new contents with greater resolutions and requirements appear every day, making it necessary to further reduce the bit rate. Perceptual video coding has recently been recognized as a promising approach to achieving high-performance video compression and eye tracking data can be used to create and verify these models. In this paper, we present a new algorithm for the bit rate reduction of screen recorded sequences based on the visual perception of videos. An eye tracking system is used during the recording to locate the fixation point of the viewer. Then, the area around that point is encoded with the base quantization parameter (QP) value, which increases when moving away from it. The results show that up to 31.3% of the bit rate may be saved when compared with the original HEVC-encoded sequence, without a significant impact on the perceived quality.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3320
Author(s):  
Anup Saha ◽  
Miguel Chavarrías ◽  
Fernando Pescador ◽  
Ángel M. Groba ◽  
Kheyter Chassaigne ◽  
...  

The increase in high-quality video consumption requires increasingly efficient video coding algorithms. Versatile video coding (VVC) is the current state-of-the-art video coding standard. Compared to the previous video standard, high efficiency video coding (HEVC), VVC demands approximately 50% higher video compression while maintaining the same quality and significantly increasing the computational complexity. In this study, coarse-grain profiling of a VVC decoder over two different platforms was performed: One platform was based on a high-performance general purpose processor (HGPP), and the other platform was based on an embedded general purpose processor (EGPP). For the most intensive computational modules, fine-grain profiling was also performed. The results allowed the identification of the most intensive computational modules necessary to carry out subsequent acceleration processes. Additionally, the correlation between the performance of each module on both platforms was determined to identify the influence of the hardware architecture.


Author(s):  
Tung Nguyen ◽  
Detlev Marpe

AOM Video 1 (AV1) and Versatile Video Coding (VVC) are the outcome of two recent independent video coding technology developments. Although VVC is the successor of High Efficiency Video Coding (HEVC) in the lineage of international video coding standards jointly developed by ITU-T and ISO/IEC within an open and public standardization process, AV1 is a video coding scheme that was developed by the industry consortium Alliance for Open Media (AOM) and that has its technological roots in Google's proprietary VP9 codec. This paper presents a compression efficiency evaluation for the AV1, VVC, and HEVC video coding schemes in a typical video compression application requiring random access. The latter is an important property, without which essential functionalities in digital video broadcasting or streaming could not be provided. For the evaluation, we employed a controlled experimental environment that basically follows the guidelines specified in the Common Test Conditions of the Joint Video Experts Team. As representatives of the corresponding video coding schemes, we selected their freely available reference software implementations. Depending on the application-specific frequency of random access points, the experimental results show averaged bit-rate savings of about 10–15% for AV1 and 36–37% for the VVC reference encoder implementation (VTM), both relative to the HEVC reference encoder implementation (HM) and by using a test set of video sequences with different characteristics regarding content and resolution. A direct comparison between VTM and AV1 reveals averaged bit-rate savings of about 25–29% for VTM, while the averaged encoding and decoding run times of VTM relative to those of AV1 are around 300% and 270%, respectively.


2016 ◽  
Vol 11 (9) ◽  
pp. 764
Author(s):  
Lella Aicha Ayadi ◽  
Nihel Neji ◽  
Hassen Loukil ◽  
Mouhamed Ali Ben Ayed ◽  
Nouri Masmoudi

Author(s):  
MyungJun Kim ◽  
Yung-Lyul Lee

High Efficiency Video Coding (HEVC) uses an 8-point filter and a 7-point filter, which are based on the discrete cosine transform (DCT), for the 1/2-pixel and 1/4-pixel interpolations, respectively. In this paper, discrete sine transform (DST)-based interpolation filters (IF) are proposed. The first proposed DST-based IFs (DST-IFs) use 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively. The final proposed DST-IFs use 12-point and 11-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively. These DST-IF methods are proposed to improve the motion-compensated prediction in HEVC. The 8-point and 7-point DST-IF methods showed average BD-rate reductions of 0.7% and 0.3% in the random access (RA) and low delay B (LDB) configurations, respectively. The 12-point and 11-point DST-IF methods showed average BD-rate reductions of 1.4% and 1.2% in the RA and LDB configurations for the Luma component, respectively.


Author(s):  
Marwa Meddeb ◽  
Marco Cagnazzo ◽  
Béatrice Pesquet-Popescu

This paper presents a novel rate control scheme designed for the newest high efficiency video coding (HEVC) standard, and aimed at enhancing the quality of regions of interest (ROI) for a videoconferencing system. It is designed to consider the different regions at both frame level and coding tree unit (CTU) level. The proposed approach allocates a higher bit rate to the region of interest while keeping the global bit rate close to the assigned target value. The ROIs, typically faces in this application, are automatically detected and each CTU is classified in a region of interest map. This binary map is given as input to the rate control algorithm and the bit allocation is made accordingly. The algorithm is tested, first, using the initial version of the controller introduced in HEVC test model (HM.10), then, extended in HM.13. In this work, we first investigate the impact of differentiated bit allocation between the two regions using a fixed bit rate ratio in intra-coded frames (I-frames) and Bidirectionally predicted frames (B-frames). Then, unit quantization parameters (QPs) are computed independently for CTUs of different regions. The proposed approach has been compared to the reference controller implemented in HM and to a ROI-based rate control algorithm initially proposed for H.264 that we adopted to HEVC and implemented in HM.9. Experimental results show that our scheme has comparable performances with the ROI-based controller proposed for H.264. It achieves accurate target bit rates and provides an improvement in region of interest quality, both in objective metrics (up to 2 dB in PSNR) and based on subjective quality evaluation.


2020 ◽  
Vol 34 (07) ◽  
pp. 11580-11587
Author(s):  
Haojie Liu ◽  
Han Shen ◽  
Lichao Huang ◽  
Ming Lu ◽  
Tong Chen ◽  
...  

Traditional video compression technologies have been developed over decades in pursuit of higher coding efficiency. Efficient temporal information representation plays a key role in video coding. Thus, in this paper, we propose to exploit the temporal correlation using both first-order optical flow and second-order flow prediction. We suggest an one-stage learning approach to encapsulate flow as quantized features from consecutive frames which is then entropy coded with adaptive contexts conditioned on joint spatial-temporal priors to exploit second-order correlations. Joint priors are embedded in autoregressive spatial neighbors, co-located hyper elements and temporal neighbors using ConvLSTM recurrently. We evaluate our approach for the low-delay scenario with High-Efficiency Video Coding (H.265/HEVC), H.264/AVC and another learned video compression method, following the common test settings. Our work offers the state-of-the-art performance, with consistent gains across all popular test sequences.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1405 ◽  
Author(s):  
Riccardo Peloso ◽  
Maurizio Capra ◽  
Luigi Sole ◽  
Massimo Ruo Roch ◽  
Guido Masera ◽  
...  

In the last years, the need for new efficient video compression methods grown rapidly as frame resolution has increased dramatically. The Joint Collaborative Team on Video Coding (JCT-VC) effort produced in 2013 the H.265/High Efficiency Video Coding (HEVC) standard, which represents the state of the art in video coding standards. Nevertheless, in the last years, new algorithms and techniques to improve coding efficiency have been proposed. One promising approach relies on embedding direction capabilities into the transform stage. Recently, the Steerable Discrete Cosine Transform (SDCT) has been proposed to exploit directional DCT using a basis having different orientation angles. The SDCT leads to a sparser representation, which translates to improved coding efficiency. Preliminary results show that the SDCT can be embedded into the HEVC standard, providing better compression ratios. This paper presents a hardware architecture for the SDCT, which is able to work at a frequency of 188 M Hz , reaching a throughput of 3.00 GSample/s. In particular, this architecture supports 8k UltraHigh Definition (UHD) (7680 × 4320) with a frame rate of 60 Hz , which is one of the best resolutions supported by HEVC.


2016 ◽  
Vol 18 (3) ◽  
pp. 364-378 ◽  
Author(s):  
Luong Pham Van ◽  
Johan De Praeter ◽  
Glenn Van Wallendael ◽  
Sebastiaan Van Leuven ◽  
Jan De Cock ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document