depth resolution
Recently Published Documents


TOTAL DOCUMENTS

797
(FIVE YEARS 96)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Dongye Zhao ◽  
Sebastijan Brezinsek ◽  
Rongxing Yi ◽  
Jannis Oelmann ◽  
Cai Laizhong ◽  
...  

Abstract One set of horizontal target elements of the Test Divertor Units (TDU), retrieved from the Wendelstein 7-X (W7-X) vessel after the end of second divertor Operation Phase (OP1.2B) in Hydrogen (H), were investigated by picosecond Laser-Induced Breakdown Spectroscopy (ps-LIBS). The Boron (B) distribution, H pattern and the material erosion/deposition pattern on these target elements were analyzed with high depth resolution and mapped in the poloidal direction of W7-X. From the spectroscopic analysis, B, H, Carbon (C) and Molybdenum (Mo) were clearly identified. A non-uniformly distributed B pattern on these divertor target elements was determined by the combination of B layer deposition during the three boronizations and W7-X plasma operation with multiple erosion and deposition steps of B. Like the TDU, the analyzed target elements are made of fine grain graphite, but have two marker layers which allow us to determine the material migration via the ps-LIBS technique. Two net erosion zones including one main erosion zone with a peak erosion depth of 6.5 μm and one weak erosion with a peak erosion of 1.3 μm were determined. Between two net erosion zones, a net deposition zone with width of 135 mm and a thickness up to 3.5 μm at the peak deposition location was determined by the ps-LIBS technique. The B distributions are correlated with the erosion/deposition pattern and the operational time in standard magnetic configuration of W7-X in the phases after the boronizations. The thickness of the containing B layer on these target elements also correlates with the erosion/deposition depth, in which the thickness of the containing B layer varies spatially in poloidal direction between 0.1 μm and 6 μm. Complementary, Focused Ion Beam combined with Scanning Electron Microscopy (FIB-SEM) was employed also to verify and investigate the deposition layer thicknesses at typical net erosion and net deposition zones as well as to identify the three boronizations in depth.


2021 ◽  
Author(s):  
Seyed Majid Mosaddad

Abstract The Persian Gulf (PG) is a shallow sea connected to the rest of the world by the Strait of Hormuz. Temperature changes in the water column, which indicate the thermocline, are typically explained by the depth of the mixed layer and the thermocline. The thermocline is caused by a sudden decrease in temperature in the water column's subsurface layer, resulting in stratification in the PG from winter to summer. The parameters are approximated numerically through the Princeton Ocean Modeling (POM) method and compared to those determined by some CTD profiles collected in the PG. The most obvious method for approximating thermocline depth is to find the maximum negative slope \(\frac{\partial T}{\partial z}\) in a temperature profile. The method produces applied results with sufficient depth resolution and smooth temperature changes with depth. This method is a component of the Princeton Ocean Modeling (POM) framework for numerically modeling temperature variation in the water basins used in this study. The depth of the mixed layer is approximated by the surface equality temperature (Sea Surface Temperature), regardless of the thermocline approximation. The variable isotherm behavior accurately approximates the thermocline depth. Thermocline formation occurs in the PG during the summer, and this article will conclude using two methods, observational and numerical modeling.


2021 ◽  
Vol 63 (12) ◽  
pp. 721-726
Author(s):  
G T Vesala ◽  
V S Ghali ◽  
S Subhani ◽  
Y Naga Prasanthi

In the recent past, quadratic frequency-modulated thermal wave imaging (QFMTWI) has been advanced with a chirp z-transform (CZT)-based processing approach to facilitate enhanced subsurface anomaly detection, depth quantification and material property estimation with enhanced depth resolution. In the present study, the applicability of CZT-based phase analysis for foreign object defect detection in a structural steel sample using QFMTWI is validated through finite element-based numerical modelling rather than experimental verification due to limited available resources. Furthermore, the enhanced defect detection capability of the CZT phase approach is qualitatively compared with the frequency- and time-domain phase approaches using the defect signal-to-noise ratio (SNR) as a quality metric. Also, an empirical relationship between the observed phases and the thermal reflection coefficient is obtained, which recommends the CZT phase as a prominent approach for foreign material defect detection.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012034
Author(s):  
L Burmak

Abstract The basic principles of measurements in spectral-domain low coherence interferometry (optical coherence tomography, optical coherence microscopy) based on acousto-optic filtration are discussed. Relations for extracting information about sample’s spatial structure from a series of spectral interference images acquired with spectral tuning are given. The implementation of measurements in spectral domain using acousto-optic filtration is considered. The effect of the acousto-optic filter characteristics on depth measurement range and depth resolution is estimated. The results of modelling of the interference signal and experimental data obtained in the scheme with acousto-optic filtration of interfering beams at the output of Michelson interferometer are presented.


Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 320
Author(s):  
Héctor Migallón ◽  
Otoniel López-Granado ◽  
Miguel O. Martínez-Rach ◽  
Vicente Galiano ◽  
Manuel P. Malumbres

The proportion of video traffic on the internet is expected to reach 82% by 2022, mainly due to the increasing number of consumers and the emergence of new video formats with more demanding features (depth, resolution, multiview, 360, etc.). Efforts are therefore being made to constantly improve video compression standards to minimize the necessary bandwidth while retaining high video quality levels. In this context, the Joint Collaborative Team on Video Coding has been analyzing new video coding technologies to improve the compression efficiency with respect to the HEVC video coding standard. A software package known as the Joint Exploration Test Model has been proposed to implement and evaluate new video coding tools. In this work, we present parallel versions of the JEM encoder that are particularly suited for shared memory platforms, and can significantly reduce its huge computational complexity. The proposed parallel algorithms are shown to achieve high levels of parallel efficiency. In particular, in the All Intra coding mode, the best of our proposed parallel versions achieves an average efficiency value of 93.4%. They also had high levels of scalability, as shown by the inclusion of an automatic load balancing mechanism.


2021 ◽  
Author(s):  
Xiaoting Peng ◽  
Dong Liang ◽  
Shanshan Zheng ◽  
Yuyao Hu ◽  
Jun Liu ◽  
...  

Author(s):  
Barbara Boldrini ◽  
Edwin Ostertag ◽  
Karsten Rebner ◽  
Dieter Oelkrug

AbstractThe article analyzes experimentally and theoretically the influence of microscope parameters on the pinhole-assisted Raman depth profiles in uniform and composite refractive media. The main objective is the reliable mapping of deep sample regions. The easiest to interpret results are found with low magnification, low aperture, and small pinholes. Here, the intensities and shapes of the Raman signals are independent of the location of the emitter relative to the sample surface. Theoretically, the results can be well described with a simple analytical equation containing the axial depth resolution of the microscope and the position of the emitter. The lower determinable object size is limited to 2–4 μm. If sub-micrometer resolution is desired, high magnification, mostly combined with high aperture, becomes necessary. The signal intensities and shapes depend now in refractive media on the position relative to the sample surface. This aspect is investigated on a number of uniform and stacked polymer layers, 2–160 μm thick, with the best available transparency. The experimental depth profiles are numerically fitted with excellent accuracy by inserting a Gaussian excitation beam of variable waist and fill fraction through the focusing lens area, and by treating the Raman emission with geometric optics as spontaneous isotropic process through the lens and the variable pinhole, respectively. The intersectional area of these two solid angles yields the leading factor in understanding confocal (pinhole-assisted) Raman depth profiles. Graphical abstract


2021 ◽  
Vol 16 (7) ◽  
pp. 1086-1095
Author(s):  
Yasuhiro Onoue ◽  
◽  
Tomohiro Ishizawa ◽  
Toru Danjo ◽  
Teruki Fukuzono

Sediment disasters have occurred with higher frequencies in recent years because of local heavy rains caused by line-shaped precipitation systems and torrential rains accompanying large typhoons. Since rescue operators are constantly under physical risk at disaster sites, there is a need for technologies to predict the occurrence of secondary disasters. The authors research the measurement of slope displacements by focusing on a depth camera that is readily deployable, can be easily set up, and enables monitoring of an extensive area but does not require expert knowledge to carry out measurements. In this process, we confirmed the difficulty of measuring slope changes preceding failure when the depth camera (DC) is set at a distance because of the large measurement errors caused by the limited depth resolution and poor measurement conditions under rainfall. In this study, we propose a new method for analyzing depth image data obtained by a depth camera and verify its validity for displacement measurements. After comparing the previous and proposed methods, we could confirm that the latter enables one to detect slope changes from minute deformations. When compared with the results of extensometers that directly measured the slope, we found that the results displayed similar tendencies of increase. Therefore, by measuring displacements preceding a slope failure using a depth camera and analyzing the depth image data acquired using the proposed method, we found that it is possible to detect minute changes that precede slope failures.


Sign in / Sign up

Export Citation Format

Share Document