pedogenic carbonate
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 24)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna C. Ortiz ◽  
Lixin Jin ◽  
Nives Ogrinc ◽  
Jason Kaye ◽  
Bor Krajnc ◽  
...  

AbstractAgricultural fields in drylands are challenged globally by limited freshwater resources for irrigation and also by elevated soil salinity and sodicity. It is well known that pedogenic carbonate is less soluble than evaporate salts and commonly forms in natural drylands. However, few studies have evaluated how irrigation loads dissolved calcium and bicarbonate to agricultural fields, accelerating formation rates of secondary calcite and simultaneously releasing abiotic CO2 to the atmosphere. This study reports one of the first geochemical and isotopic studies of such “anthropogenic” pedogenic carbonates and CO2 from irrigated drylands of southwestern United States. A pecan orchard and an alfalfa field, where flood-irrigation using the Rio Grande river is a common practice, were compared to a nearby natural dryland site. Strontium and carbon isotope ratios show that bulk pedogenic carbonates in irrigated soils at the pecan orchard primarily formed due to flood-irrigation, and that approximately 20–50% of soil CO2 in these irrigated soils is calcite-derived abiotic CO2 instead of soil-respired or atmospheric origins. Multiple variables that control the salt buildup in this region are identified and impact the crop production and soil sustainability regionally and globally. Irrigation intensity and water chemistry (irrigation water quantity and quality) dictate salt loading, and soil texture governs water infiltration and salt leaching. In the study area, agricultural soils have accumulated up to 10 wt% of calcite after just about 100 years of cultivation. These rates will likely increase in the future due to the combined effects of climate variability (reduced rainfall and more intense evaporation), use of more brackish groundwater for irrigation, and reduced porosity in soils. The enhanced accumulation rates of pedogenic carbonate are accompanied by release of large amounts of abiotic CO2 from irrigated drylands to atmosphere. Extensive field studies and modelling approaches are needed to further quantify these effluxes at local, regional and global scales.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2615-2631
Author(s):  
Emilija Krsnik ◽  
Katharina Methner ◽  
Marion Campani ◽  
Svetlana Botsyun ◽  
Sebastian G. Mutz ◽  
...  

Abstract. Reconstructing Oligocene–Miocene paleoelevation contributes to our understanding of the evolutionary history of the European Alps and sheds light on geodynamic and Earth surface processes involved in the development of Alpine topography. Despite being one of the most intensively explored mountain ranges worldwide, constraints on the elevation history of the European Alps remain scarce. Here we present stable and clumped isotope measurements to provide a new paleoelevation estimate for the mid-Miocene (∼14.5 Ma) European Central Alps. We apply stable isotope δ–δ paleoaltimetry to near-sea-level pedogenic carbonate oxygen isotope (δ18O) records from the Northern Alpine Foreland Basin (Swiss Molasse Basin) and high-Alpine phyllosilicate hydrogen isotope (δD) records from the Simplon Fault Zone (Swiss Alps). We further explore Miocene paleoclimate and paleoenvironmental conditions in the Swiss Molasse Basin through carbonate stable (δ18O, δ13C) and clumped (Δ47) isotope data from three foreland basin sections in different alluvial megafan settings (proximal, mid-fan, and distal). Combined pedogenic carbonate δ18O values and Δ47 temperatures (30±5 ∘C) yield a near-sea-level precipitation δ18Ow value of -5.8±1.2 ‰ and, in conjunction with the high-Alpine phyllosilicate δD value of -14.6±0.3 ‰, suggest that the region surrounding the Simplon Fault Zone attained surface elevations of >4000 m no later than the mid-Miocene. Our near-sea-level δ18Ow estimate is supported by paleoclimate (iGCM ECHAM5-wiso) modeled δ18O values, which vary between −4.2 ‰ and −7.6 ‰ for the Northern Alpine Foreland Basin.


2021 ◽  
Author(s):  
Alexis Licht ◽  
Julia R Kelson ◽  
Shelly J. Bergel ◽  
Andrew Schauer ◽  
Sierra V Petersen ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Emilija Krsnik ◽  
Katharina Methner ◽  
Marion Campani ◽  
Svetlana Botsyun ◽  
Sebastian G. Mutz ◽  
...  

Abstract. Reconstructing Oligocene-Miocene paleoelevation contributes to our understanding of the evolutionary history of the European Alps and sheds light on geodynamic and Earth’s surface processes involved in the development of Alpine topography. Despite being one of the most intensively explored mountain ranges worldwide, constraints on the elevation history of the European Alps, however, remain scarce. Here we present stable and clumped isotope geochemistry measurements to provide a new paleoelevation estimate for the mid-Miocene (~14.5 Ma) European Central Alps. We apply stable isotope δ-δ paleoaltimetry on near sea level pedogenic carbonate oxygen isotope (δ18O) records from the Northern Alpine Foreland Basin (Swiss Molasse Basin) and high-Alpine phyllosilicate hydrogen isotope (δD) records from the Simplon Fault Zone (Swiss Alps). We further explore Miocene paleoclimate and paleoenvironmental conditions in the Swiss Molasse Basin through carbonate stable (δ18O, δ13C) and clumped (Δ47) isotope data from three foreland basin sections in different alluvial megafan settings (proximal, mid-fan, and distal). Combined pedogenic carbonate δ18O values and Δ47 temperatures (30 ± 5 °C) yield a near sea level precipitation δ18Ow value of −5.8 ± 0.2 ‰ and in conjunction with the high-Alpine phyllosilicate δD record suggest that the region surrounding the SFZ attained surface elevations of > 4000 m no later than the mid-Miocene. Our near sea level δ18Ow estimate is supported by paleoclimate (iGCM Echam5-wiso) modeled δ18O values, which vary between −4.2 and −7.6 ‰ for the Northern Alpine Foreland Basin.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11013
Author(s):  
Alan L. Titus ◽  
Katja Knoll ◽  
Joseph J.W. Sertich ◽  
Daigo Yamamura ◽  
Celina A. Suarez ◽  
...  

Tyrannosaurids are hypothesized to be gregarious, possibly parasocial carnivores engaging in cooperative hunting and extended parental care. A tyrannosaurid (cf. Teratophoneus curriei) bonebed in the late Campanian age Kaiparowits Formation of southern Utah, nicknamed the Rainbows and Unicorns Quarry (RUQ), provides the first opportunity to investigate possible tyrannosaurid gregariousness in a taxon unique to southern Laramidia. Analyses of the site’s sedimentology, fauna, flora, stable isotopes, rare earth elements (REE), charcoal content and taphonomy suggest a complex history starting with the deaths and transport of tyrannosaurids into a peri-fluvial, low-energy lacustrine setting. Isotopic and REE analyses of the fossil material yields a relatively homogeneous signature indicating the assemblage was derived from the same source and represents a fauna living in a single ecospace. Subsequent drying of the lake and fluctuating water tables simultaneously overprinted the bones with pedogenic carbonate and structurally weakened them through wet-dry cycling. Abundant charcoal recovered from the primary bone layer indicate a low temperature fire played a role in the site history, possibly triggering an avulsion that exhumed and reburied skeletal material on the margin of a new channel with minimal transport. Possible causes of mortality and concentration of the tyrannosaurids include cyanobacterial toxicosis, fire, and flooding, the latter being the preferred hypothesis. Comparisons of the RUQ site with other North American tyrannosaur bonebeds (Dry Island-Alberta; Daspletosaurus horneri-Montana) suggest all formed through similar processes. Combined with ichnological evidence, these tyrannosaur mass-burial sites could be part of an emerging pattern throughout Laramidia reflecting innate tyrannosaurid behavior such as habitual gregariousness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhonda L. Quinn ◽  
Christopher J. Lepre

AbstractThe extinction of the Paranthropus boisei estimated to just before 1 Ma occurred when C4 grasslands dominated landscapes of the Eastern African Rift System (EARS). P. boisei has been characterized as an herbivorous C4 specialist, and paradoxically, its demise coincided with habitats favorable to its dietary ecology. Here we report new pedogenic carbonate stable carbon (δ13CPC) and oxygen (δ18OPC) values (nodules = 53, analyses = 95) from an under-sampled interval (1.4–0.7 Ma) in the Turkana Basin (Kenya), one of the most fossiliferous locales of P. boisei. We combined our new results with published δ13CPC values from the EARS dated to 3–0 Ma, conducted time-series analysis of woody cover (ƒWC), and compared the EARS ƒWC trends to regional and global paleo-environmental and -climatic datasets. Our results demonstrate that the long-term rise of C4 grasslands was punctuated by a transient but significant increase in C3 vegetation and warmer temperatures, coincident with the Mid-Pleistocene Transition (1.3–0.7 Ma) and implicating a short-term rise in pCO2. The contraction of C4 grasslands escalated dietary competition amongst the abundant C4-feeders, likely influencing P. boisei’s demise.


Sign in / Sign up

Export Citation Format

Share Document