forested region
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Tímea Szalárdi ◽  
Szabolcs Szanyi ◽  
István Szarukán ◽  
Miklós Tóth ◽  
Antal Nagy

Lepidopteran assemblages were studied at 16 sampling sites in the Hajdúság Region between 2013 and 2020. Although studies targeted development of synthetic phenylacetaldehyde-based and semi-synthetic isoamyl alcohol-based baits for pest monitoring, traps caught 179 species belonging to the Sphingidae, Thyatiridae, Geometridae, Erebidae and Noctuidae families. Most species were pests or widely distributed generalists, but there were also many rare habitat specialists, for example, silvicol species, whose appearance was unexpected in the recently less forested region. The specificity of the two bait types tested differed notably both on family and subfamily levels. Semi-synthetic baits performed better and attracted a wide range of noctuids belonging mainly to the Xyleninae and Noctuinae subfamilies, while synthetic phenylacetaldehyde-based lures showed specificity to Plusiinae subfamilies with lower number of sampled species. Our data fill a gap of knowledge since the fauna studied formerly was nearly unknown and brings attention to the alternative use of volatile traps of agricultural pests in faunistical studies.


2021 ◽  
Vol 13 (5) ◽  
pp. 951
Author(s):  
Ling Hu ◽  
Wenjie Fan ◽  
Wenping Yuan ◽  
Huazhong Ren ◽  
Yaokui Cui

Gross primary productivity (GPP) represents total vegetation productivity and is crucial in regional or global carbon balance. The Northeast China (NEC), abundant in vegetation resources, has a relatively large vegetation productivity; however, under obvious climate change (especially warming), whether and how will the vegetation productivity and ecosystem function of this region changed in a long time period needs to be revealed. With the help of GPP products provided by the Global LAnd Surface Satellite (GLASS) program, this paper gives an overview of the regional feedback of vegetation productivity to the changing climate (including temperature, precipitation, and solar radiation) across the NEC from 1982 to 2015. Analyzing results show a slight positive response of vegetation productivities to warming across the NEC with an overall increasing trend of GPPGS (accumulated GPP within the growing season of each year) at 4.95 g C/m2. yr−2 over the last three decades. More specifically, the growth of crops, rather than forests, contributes more to the total increasing productivity, which is mainly induced by the agricultural technological progress as well as warming. As for GPP in forested area in the NEC, the slight increment of GPPGS in northern, high-latitude forested region of the NEC was caused by warming, while non-significant variation of GPPGS was found in southern, low-latitude forested region. In addition, an obvious greening trend, as reported in other regions, was also found in the NEC, but GPPGS of forests in southern NEC did not have significant variations, which indicated that vegetation productivity is not bound to increase simultaneously with greening, except for these high-latitude forested areas in the NEC. The regional feedback of vegetation productivity to climate change in the NEC can be an indicator for vegetations growing in higher latitudes in the future under continued climate change.


Geoderma ◽  
2020 ◽  
Vol 378 ◽  
pp. 114617
Author(s):  
Chenyang Xu ◽  
John J. Qu ◽  
Xianjun Hao ◽  
Zhiliang Zhu ◽  
Laurel Gutenberg

Sign in / Sign up

Export Citation Format

Share Document