fragment type
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
E. Edwin

Cibulakan Formation as one of the prolific hydrocarbon-bearing intervals has become an interesting study object for many researchers. The continuous outcrop of the Cibulakan Formation in the Cipamingkis River comprises claystone, sandstone, and subordinate limestone of grainstone, packstone, and wackestone facies. The outcrop should be able to give a clearer vertical and spatial variation of sandstone and limestone geometry compared to the conventional core alone. Field observations followed by measuring the section is conducted to distinguish lithofacies and to create a stratigraphic profile from the chosen interval. Samples and thin sections from sandstone and limestone lithofacies are observed further to determine fragment type variation, matrix, cement, texture, and porosity types qualitatively. Fourteen (14) lithofacies have been recognized from the observation, i.e., Slumped Sandstone (A1), Claystone (A2), Slightly-bioturbated Sandstone (B1), Cross-laminated Sandstone (B2), Parallel-laminated Siltstone (B3), Calcareous Claystone (B4), Moderately-bioturbated Sandstone (C1), Hummocky Cross-stratified Sandstone (C2), Skeletal – Coral clast Wackestone (C3), Skeletal-clast Packstone (C4), Coralline Foraminiferal Boundstone (C5), Low-angle Planar Cross-bedded Sandstone (D1), Intensely-bioturbated Sandstone (D2), and Trough Cross-bedded Sandstone (D3). There are four architectural facies in the research interval and each of them is composed of different and specific lithofacies. An ideal parasequence is composed of all Architectural Facies namely : (A) Offshore-Transition (B) Lower Shoreface (C) Upper Shoreface with the whole thickness range between 15 to 25 m and the parasequence shows thickening upward succession. The detailed information about the lithofacies and architectural facies hopefully will provide a better understanding of the facies modelling of the mixed carbonate-siliciclastic depositional setting, new insights for parasequence recognition in clastic shoreline depositional environment and become a reference for other areas lacking in core data and/or outcrop analogue.


2021 ◽  
Author(s):  
Milena Simic ◽  
Milos Petkovic ◽  
Predrag Jovanovic ◽  
Milos Jovanovic ◽  
Gordana Tasic ◽  
...  

2020 ◽  
Vol 80 (1) ◽  
pp. 122-132 ◽  
Author(s):  
G. S. Silva ◽  
S.M. Jahnke ◽  
N.F. Johnson

Abstract Hymenopteran parasitoids are important biological control agents in agroecosystems, and their diversity can be increased with habitat heterogeneity. Thus, the purpose of the study is to evaluate the influence of distance of rice-growing areas from natural fragment, type of crop management (organic and conventional) and crop stages (vegetative and reproductive stages) on parasitoids family diversity. The work took place in two irrigated rice crops, one with organic management (O.M.) and another one with conventional management (C.M.), in the municipality of Nova Santa Rita, RS, Brazil, during the 2013/2014 and 2014/2015 seasons. The parasitoids were collected with Malaise trap arranged at different distances in relation to the native vegetation surrounding the rice crop in both places. Specimens were collected twice a month from seeding until the rice harvest. Average abundance between management, distances and rice development were compared. The most abundant families were Platygastridae, Mymaridae, Encyrtidae, Eulophidae and Trichogrammatidae. Parasitoid average abundance was significantly higher on OM only in the second season. There was a negative correlation between distance from native vegetation and parasitoid abundance in C.M. areas. There were differences in the composition of the parasitoid assembly between the phenological stages of rice.


Sign in / Sign up

Export Citation Format

Share Document