jordan domain
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 9 (1) ◽  
pp. 167-185
Author(s):  
Toni Ikonen

Abstract We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y, dY ). We say that a metric space (Y, dY ) is a quasiconformal Jordan domain if the completion ̄Y of (Y, dY ) has finite Hausdorff 2-measure, the boundary ∂Y = ̄Y \ Y is homeomorphic to 𝕊1, and there exists a homeomorphism ϕ: 𝔻 →(Y, dY ) that is quasiconformal in the geometric sense. We show that ϕ has a continuous, monotone, and surjective extension Φ: 𝔻 ̄ → Y ̄. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for Φ to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of Φ to 𝕊1 being a quasisymmetry and to ∂Y being bi-Lipschitz equivalent to a quasicircle in the plane.



2020 ◽  
Vol 26 ◽  
pp. 76
Author(s):  
Gian Paolo Leonardi ◽  
Giorgio Saracco

We provide a geometric characterization of the minimal and maximal minimizer of the prescribed curvature functional P(E) − κ|E| among subsets of a Jordan domain Ω with no necks of radius κ−1, for values of κ greater than or equal to the Cheeger constant of Ω. As an application, we describe all minimizers of the isoperimetric profile for volumes greater than the volume of the minimal Cheeger set, relative to a Jordan domain Ω which has no necks of radius r, for all r. Finally, we show that for such sets and volumes the isoperimetric profile is convex.



2019 ◽  
pp. 1-28
Author(s):  
IAN ALEVY ◽  
RICHARD KENYON ◽  
REN YI

A domain exchange map (DEM) is a dynamical system defined on a smooth Jordan domain which is a piecewise translation. We explain how to use cut-and-project sets to construct minimal DEMs. Specializing to the case in which the domain is a square and the cut-and-project set is associated to a Galois lattice, we construct an infinite family of DEMs in which each map is associated to a Pisot–Vijayaraghavan (PV) number. We develop a renormalization scheme for these DEMs. Certain DEMs in the family can be composed to create multistage, renormalizable DEMs.



2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Zhou Yu ◽  
Xiao Bing

Let D be the unit disk in the complex plane C and denote T=∂D. Write Hom+T,∂Ω for the class of all sense-preserving homeomorphism of T onto the boundary of a C2 convex Jordan domain Ω. In this paper, five equivalent conditions for the solutions of triharmonic equations ∂z∂z¯3ω=ff∈CD¯ with Dirichlet boundary value conditions ωzz¯zz¯T=γ2∈CT,ωzz¯T=γ1∈CT and ωT=γ0∈Hom+T,∂Ω to be Lipschitz continuous are presented.



Author(s):  
Gian Paolo Leonardi ◽  
Robin Neumayer ◽  
Giorgio Saracco


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Vyron Vellis

AbstractLet Ω be a planar Jordan domain and α > 0. We consider double-dome-like surfaces Σ(Ω, tα) over Ω where the height of the surface over any point x ∈ Ωequals dist(x, ∂Ω)α. We identify the necessary and sufficient conditions in terms of and α so that these surfaces are quasisymmetric to S2 and we show that Σ(Ω, tα) is quasisymmetric to the unit sphere S2 if and only if it is linearly locally connected and Ahlfors 2-regular.



2015 ◽  
Vol 151 (12) ◽  
pp. 2301-2328 ◽  
Author(s):  
Julius Ross ◽  
David Witt Nyström

We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability both when starting from a single point and also when starting from a smooth Jordan domain. Applying the same ideas, we prove that the moduli space of smooth quadrature domains is a smooth manifold whose dimension we also calculate, and we give a local existence theorem for the inverse potential problem in the plane.



2013 ◽  
Vol 43 (4) ◽  
pp. 1317-1323
Author(s):  
John Marafino
Keyword(s):  


Nonlinearity ◽  
2006 ◽  
Vol 20 (1) ◽  
pp. 119-131 ◽  
Author(s):  
Qiao Jianyong ◽  
Gao Junyang
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document