Growth Factors and Signal Transduction Involving Inositol Lipids

2020 ◽  
pp. 219-230
Author(s):  
Suresh K. Joseph
1996 ◽  
Vol 135 (6) ◽  
pp. 1633-1642 ◽  
Author(s):  
S Miyamoto ◽  
H Teramoto ◽  
J S Gutkind ◽  
K M Yamada

Integrins mediate cell adhesion, migration, and a variety of signal transduction events. These integrin actions can overlap or even synergize with those of growth factors. We examined for mechanisms of collaboration or synergy between integrins and growth factors involving MAP kinases, which regulate many cellular functions. In cooperation with integrins, the growth factors EGF, PDGF-BB, and basic FGF each produced a marked, transient activation of the ERK (extracellular signal-regulated kinase) class of MAP kinase, but only if the integrins were both aggregated and occupied by ligand. Transmembrane accumulation of total tyrosine-phosphorylated proteins, as well as nonsynergistic MAP kinase activation, could be induced by simple integrin aggregation, whereas enhanced transient accumulation of the EGF-receptor substrate eps8 required integrin aggregation and occupancy, as well as EGF treatment. Each type of growth factor receptor was itself induced to aggregate transiently by integrin ligand-coated beads in a process requiring both aggregation and occupancy of integrin receptors, but not the presence of growth factor ligand. Synergism was also observed between integrins and growth factors for triggering tyrosine phosphorylation of EGF, PDGF, and FGF receptors. This collaborative response also required both integrin aggregation and occupancy. These studies identify mechanisms in the signal transduction response to integrins and growth factors that require various combinations of integrin aggregation and ligands for integrin or growth factor receptors, providing opportunities for collaboration between these major regulatory systems.


2021 ◽  
Vol 67 (1) ◽  
pp. 20-28
Author(s):  
Alexandr Chernov ◽  
Irina Baldueva ◽  
Tatyana Nekhaeva ◽  
Elvira Galimova ◽  
Diana Alaverdian ◽  
...  

In review discusses the phenomenon of drug resistance of GB in the context of the expression of ABC family transporter proteins and the processes of proliferation, angiogenesis, recurrence and death. The emphasis is on the identifying for molecular targets among growth factors, receptors, signal transduction proteins, microRNAs, transcription factors, proto-oncogenes, tumor suppressor genes and their polymorphic variants (SNPs) for the development and creation of targeted anticancer drugs.


2019 ◽  
Vol 20 (19) ◽  
pp. 4844 ◽  
Author(s):  
Ritva Tikkanen ◽  
David J. Nikolic-Paterson

Mitogen-activated protein kinases (MAPKs) are involved in signaling processes induced by various stimuli, such as growth factors, stress, or even autoantibodies [...]


1995 ◽  
Vol 15 (3) ◽  
pp. 440-449 ◽  
Author(s):  
Kenneth Maiese ◽  
Lauraine Boccone

Basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) are neuroprotective during anoxia and nitric oxide (NO) toxicity. Signal transduction systems that modulate protein kinase C (PKC) also can modulate the toxic effects of anoxia and NO. We therefore examined whether PKC was involved in the protective effects of bFGF and EGF during anoxia and NO toxicity. Down-regulation or inhibition of PKC activity before anoxia or NO exposure prevented hippocampal neuronal degeneration. Yet, this protective effect of inhibition of PKC activity was not present with the coadministration of growth factors. Combined inhibition of PKC activity and application of bFGF or EGF lessened the protective mechanisms of the growth factors. In addition, the protective ability of the growth factors was lost during anoxia and NO exposure with the activation of PKC, suggesting that at least a minimal degree of PKC activation is necessary for growth factor protection. Although modulation of PKC activity may be a necessary prerequisite for protection against anoxia and NO toxicity by bFGF and EGF, only inhibition of PKC activity, rather than application of the growth factors, was protective following exposure to NO. These results suggest that the mechanism of protection by bFGF and EGF during anoxia and NO toxicity appears initially to be dependent on a minimum degree of PKC activation, but that other signal transduction pathways independent of PKC also may mediate protection by peptide growth factors.


2020 ◽  
Vol 21 (14) ◽  
pp. 5133
Author(s):  
Neele Schumacher ◽  
Stefan Rose-John ◽  
Dirk Schmidt-Arras

Tumour growth is not solely driven by tumour cell-intrinsic mechanisms, but also depends on paracrine signals provided by the tumour micro-environment. These signals comprise cytokines and growth factors that are synthesized as trans-membrane proteins and need to be liberated by limited proteolysis also termed ectodomain shedding. Members of the family of A disintegrin and metalloproteases (ADAM) are major mediators of ectodomain shedding and therefore initiators of paracrine signal transduction. In this review, we summarize the current knowledge on how ADAM proteases on tumour cells but also on cells of the tumour micro-environment contribute to the formation of gastrointestinal tumours, and discuss how these processes can be exploited pharmacologically.


1991 ◽  
Vol 11 (6) ◽  
pp. 3148-3154 ◽  
Author(s):  
L J Mundschau ◽  
D V Faller

Several lines of evidence now exist to suggest an interaction between the platelet-derived growth factor (PDGF) growth-stimulatory signal transduction pathway and the beta interferon (IFN-beta) growth-inhibitory signal transduction pathway. The most direct examples are inhibition of PDGF-mediated gene induction and mitogenesis by IFN-beta and the effects of activators and inhibitors of the IFN-inducible double-stranded RNA-dependent eIF2 kinase on expression of PDGF-inducible genes. To further investigate the nature of this PDGF/IFN-beta interaction, we selected BALB/c-3T3 cells for resistance to growth inhibition by IFN-beta and analyzed the phenotypes of resulting clonal lines (called IRB cells) with respect to PDGF signal transduction. Although selected only for IFN resistance, the IRB cells were found to be defective for induction of growth-related genes c-fos, c-myc and JE in response to PDGF. This block to signal transduction was not due to loss or inactivation of PDGF receptors, as immunoprecipitation of PDGF receptors with antiphosphotyrosine antibodies showed them to be present at equal levels in the BALB/c-3T3 and IRB cells and to be autophosphorylated normally in response to PDGF. Furthermore, treatment with other peptide growth factors (PDGF-AA, fibroblast growth factor, and epidermal growth factor) also failed to induce c-fos, c-myc, or JE expression in IRB cells. All of these growth factors, however, were able to induce another early growth-related gene, Egr-1. The block to signaling was not due to a defect in inositol phosphate metabolism, as PDGF treatment induced normal calcium mobilization and phosphotidylinositol-3-kinase activation in these cells. Activation of protein kinase C by phorbol esters did induce c-fos, c-myc, and JE in IRB cells, indicating that signalling pathways distal to this enzyme remained intact. We have previously shown that IFN-inducible enzyme activities, including double-stranded RNA-dependent eIF2 kinase and 2',5'-oligoadenylate synthetase, are normal in IRB cells. The finding that the induction of multiple growth-related genes by several independent growth factors is inhibited in these IFN-resistant cells suggests that there is a second messenger common to both growth factor and IFN signaling pathways and that this messenger is defective in these cells.


2007 ◽  
Vol 35 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M. Waterfield

Over the last 45 years, I have been working on growth factors, their receptors and signal transduction mechanisms. This period has seen a tremendous growth in knowledge and technology, and all of this, together with a focus interest in oncology, has steered me along a path designed to understand growth factor signalling so that we can see how drugs that target signalling pathways might be able to control cancer. The knowledge that we already have is likely to lead to cures for many common cancers within the next 25 years.


Sign in / Sign up

Export Citation Format

Share Document