wave propagation velocity
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5543
Author(s):  
Jinrui Huang ◽  
Frederic Cegla ◽  
Andy Wickenden ◽  
Mike Coomber

The characterisation and monitoring of viscous fluids have many important applications. This paper reports a refined ‘dipstick’ method for ultrasonic measurement of the properties of viscous fluids. The presented method is based on the comparison of measurements of the ultrasonic properties of a waveguide that is immersed in a viscous liquid with the properties when it is immersed in a reference liquid. We can simultaneously determine the temperature and viscosity of a fluid based on the changes in the velocity and attenuation of the elastic shear waves in the waveguide. Attenuation is mainly dependent on the viscosity of the fluid that the waveguide is immersed in and the speed of the wave mainly depends on the surrounding fluid temperature. However, there is a small interdependency since the mass of the entrained viscous liquid adds to the inertia of the system and slows down the wave. The presented measurements have unprecedented precision so that the change due to the added viscous fluid mass becomes important and we propose a method to model such a ‘viscous effect’ on the wave propagation velocity. Furthermore, an algorithm to correct the velocity measurements is presented. With the proposed correction algorithm, the experimental results for kinematic viscosity and temperature show excellent agreement with measurements from a highly precise in-lab viscometer and a commercial resistance temperature detector (RTD) respectively. The measurement repeatability of the presented method is better than 2.0% in viscosity and 0.5% in temperature in the range from 8 to 300 cSt viscosity and 40 to 90 °C temperature.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 323
Author(s):  
Nayuta Arai ◽  
Masafumi Miyake ◽  
Kengo Yamamoto ◽  
Itsuro Kajiwara ◽  
Naoki Hosoya

Many methods based on acoustic vibration characteristics have been studied to indirectly assess fruit ripeness via fruit firmness. Among these, the frequency of the 0S2 vibration mode measured on the equator has been examined, but soft-flesh fruit do not show the 0S2 vibration mode. In this study, a Rayleigh wave is generated on a soft mango fruit using the impulse excitation force generated by a laser-induced plasma shock wave technique. Then, the flesh firmness of mangoes is assessed in a non-contact and non-destructive manner by observing the Rayleigh wave propagation velocity because it is correlated with the firmness (shear elasticity), density, and Poisson’s ratio of an object. If the changes in the density and Poisson’s ratio are small enough to be ignored during storage, then the Rayleigh wave propagation velocity is strongly correlated to fruit firmness. Here, we measure the Rayleigh wave propagation velocity and investigate the effect of storage time. Specifically, we investigate the changes in firmness caused by ripening. The Rayleigh wave propagation velocity on the equator of Kent mangoes tended to decrease by over 4% in 96 h. The Rayleigh wave measured on two different lines propagated independent distance and showed a different change rate of propagation velocity during 96-h storage. Furthermore, we consider the reliability of our method by investigating the interaction of a mango seed on the Rayleigh wave propagation velocity.


2021 ◽  
Vol 8 (1) ◽  
pp. 109-118
Author(s):  
Erica Lenticchia ◽  
Amedeo Manuello Bertetto ◽  
Rosario Ceravolo

Abstract In the present paper, the acoustic emission (AE) device is used with an innovative approach, based on the calculation of P-wave propagation velocity (vp ), to detect the stiffness characteristics and the diffused damage of in-service old concrete structures. The paper presents the result of a recent testing campaign carried out on the slant pillars composing the vertical bearing structures designed by Pier Luigi Nervi in one of his most iconic buildings: the Hall B of Torino Esposizioni. In order to investigate the properties of these inclined pillars, localizations of artificial sources (hammer impacts), by the triangulation procedure, were performed on three different inclined elements characterized by stiffness discrepancies due to different causes: the casting procedures, executed in different stages, and the enlargement of the hall happened a few years later the beginning of the construction. In the present work, the relationship between the velocity of AE signals and the elastic characteristics (principally elastic modulus, E) is evaluated in order to discriminate the stiffness level of the slanted pillars. The procedure presented made it possible to develop an innovative investigation method able to estimate, by means of AE, the state of conservation and the elastic properties and the damage level of the monitored concrete and reinforced concrete structures.


2020 ◽  
Vol 70 (339) ◽  
pp. 227
Author(s):  
L. Calleja ◽  
V. G. Ruiz de Argandoña ◽  
N. Sánchez-Delgado ◽  
A. Setién

The existence of a possible anisotropy, determined by the orientation of any mineral or by micro­crack network in granite rock, isn´t easily detected by the naked eye. Five granitic rocks from Galicia (Spain), namely Albero, Gris Alba, Gris Mondariz, Rosa Porriño and Traspielas, were characterized petrographically by means of textural and mineralogical studies, using optical polarizing microscopy, and fractographic studies were carried out under scanning electron microscopy. Longitudinal wave propagation velocity was measured in three orthogonal directions on cubic samples, oriented according to rift surface (known in quarry works like the preferential partition surface visible in the blocks). Vp was measured on dry and water saturated samples. All the dry samples showed an anisotropic behaviour of Vp. Models of microcrack network distribution and possible mineral grain orientation were developed based on the obtained data.


Sign in / Sign up

Export Citation Format

Share Document