postinhibitory rebound
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 1)

H-INDEX

19
(FIVE YEARS 0)

2017 ◽  
Vol 114 (48) ◽  
pp. 12815-12820 ◽  
Author(s):  
Jared M. Cregg ◽  
Kevin A. Chu ◽  
Thomas E. Dick ◽  
Lynn T. Landmesser ◽  
Jerry Silver

Central neural networks operate continuously throughout life to control respiration, yet mechanisms regulating ventilatory frequency are poorly understood. Inspiration is generated by the pre-Bötzinger complex of the ventrolateral medulla, where it is thought that excitation increases inspiratory frequency and inhibition causes apnea. To test this model, we used an in vitro optogenetic approach to stimulate select populations of hindbrain neurons and characterize how they modulate frequency. Unexpectedly, we found that inhibition was required for increases in frequency caused by stimulation of Phox2b-lineage, putative CO2-chemosensitive neurons. As a mechanistic explanation for inhibition-dependent increases in frequency, we found that phasic stimulation of inhibitory neurons can increase inspiratory frequency via postinhibitory rebound. We present evidence that Phox2b-mediated increases in frequency are caused by rebound excitation following an inhibitory synaptic volley relayed by expiration. Thus, although it is widely thought that inhibition between inspiration and expiration simply prevents activity in the antagonistic phase, we instead propose a model whereby inhibitory coupling via postinhibitory rebound excitation actually generates fast modes of inspiration.


2014 ◽  
Vol 112 (3) ◽  
pp. 683-704 ◽  
Author(s):  
Ying Li ◽  
Robert A. Davey ◽  
Shobhana Sivaramakrishnan ◽  
William P. Lynch

Certain retroviruses induce progressive spongiform motor neuron disease with features resembling prion diseases and amyotrophic lateral sclerosis. With the neurovirulent murine leukemia virus (MLV) FrCasE, Env protein expression within glia leads to postsynaptic vacuolation, cellular effacement, and neuronal loss in the absence of neuroinflammation. To understand the physiological changes associated with MLV-induced spongiosis, and its neuronal specificity, we employed patch-clamp recordings and voltage-sensitive dye imaging in brain slices of the mouse inferior colliculus (IC), a midbrain nucleus that undergoes extensive spongiosis. IC neurons characterized by postinhibitory rebound firing (PIR) were selectively affected in FrCasE-infected mice. Coincident with Env expression in microglia and in glia characterized by NG2 proteoglycan expression (NG2 cells), rebound neurons (RNs) lost PIR, became hyperexcitable, and were reduced in number. PIR loss and hyperexcitability were reversed by raising internal calcium buffer concentrations in RNs. PIR-initiated rhythmic circuits were disrupted, and spontaneous synchronized bursting and prolonged depolarizations were widespread. Other IC neuron cell types and circuits within the same degenerative environment were unaffected. Antagonists of NMDA and/or AMPA receptors reduced burst firing in the IC but did not affect prolonged depolarizations. Antagonists of L-type calcium channels abolished both bursts and slow depolarizations. IC infection by the nonneurovirulent isogenic virus Friend 57E (Fr57E), whose Env protein is structurally similar to FrCasE, showed no RN hyperactivity or cell loss; however, PIR latency increased. These findings suggest that spongiform neurodegeneration arises from the unique excitability of RNs, their local regulation by glia, and the disruption of this relationship by glial expression of abnormal protein.


2012 ◽  
Vol 108 (5) ◽  
pp. 1403-1429 ◽  
Author(s):  
Jesse H. Goldberg ◽  
Michael A. Farries ◽  
Michale S. Fee

The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (∼5 ms) pulse of inhibition that completely suppresses thalamic spiking. As a result, thalamic spikes are entrained to pallidal spikes with submillisecond precision. Second, we find that the number of thalamic spikes that discharge within a single pallidal interspike interval (ISI) depends linearly on the duration of that interval but does not depend on pallidal activity prior to the interval. In a detailed biophysical model, our results were not easily explained by the postinhibitory “rebound” mechanism previously observed in anesthetized birds and in brain slices, nor could most of our data be characterized as “gating” of excitatory transmission by inhibitory pallidal input. Instead, we propose a novel “entrainment” mechanism of pallidothalamic transmission that highlights the importance of an excitatory conductance that drives spiking, interacting with brief pulses of pallidal inhibition. Building on our recent finding that cortical inputs can drive syllable-locked rate modulations in thalamic neurons during singing, we report here that excitatory inputs affect thalamic spiking in two ways: by shortening the latency of a thalamic spike after a pallidal spike and by increasing thalamic firing rates within individual pallidal ISIs. We present a unifying biophysical model that can reproduce all known modes of pallidothalamic transmission—rebound, gating, and entrainment—depending on the amount of excitation the thalamic neuron receives.


2012 ◽  
Vol 32 (19) ◽  
pp. 6501-6510 ◽  
Author(s):  
M. H. Adhikari ◽  
P. P. Quilichini ◽  
D. Roy ◽  
V. Jirsa ◽  
C. Bernard

2011 ◽  
Vol 31 (35) ◽  
pp. 12566-12578 ◽  
Author(s):  
R. A. Felix ◽  
A. Fridberger ◽  
S. Leijon ◽  
A. S. Berrebi ◽  
A. K. Magnusson

Sign in / Sign up

Export Citation Format

Share Document