calcium buffer
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 7)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mark Donowitz ◽  
Chung-Ming Tse ◽  
Karol Dokladny ◽  
Manmeet Rawat ◽  
Ivy Horwitz ◽  
...  

ABSTRACTDiarrhea occurs in 2-50% of cases of COVID-19 (∼8% is average across series). The diarrhea does not appear to account for the disease mortality and its contribution to the morbidity has not been defined, even though it is a component of Long Covid or post-infectious aspects of the disease. Even less is known about the pathophysiologic mechanism of the diarrhea. To begin to understand the pathophysiology of COVID-19 diarrhea, we exposed human enteroid monolayers obtained from five healthy subjects and made from duodenum, jejunum, and proximal colon to live SARS-CoV-2 and virus like particles (VLPs) made from exosomes expressing SARS-CoV-2 structural proteins (Spike, Nucleocapsid, Membrane and Envelope). Results: 1) Live virus was exposed apically for 90 min, then washed out and studied 2 and 5 days later. SARS-Cov-2 was taken up by enteroids and live virus was present in lysates and in the apical>>basolateral media of polarized enteroids 48 h after exposure. This is the first demonstration of basolateral appearance of live virus after apical exposure. High vRNA concentration was detected in cell lysates and in the apical and basolateral media up to 5 days after exposure. 2) Two days after viral exposure, cytokine measurements of media showed significantly increased levels of IL-6, IL-8 and MCP-1. 3) Two days after viral exposure, mRNA levels of ACE2, NHE3 and DRA were reduced but there was no change in mRNA of CFTR. NHE3 protein was also decreased. 4) Live viral studies were mimicked by some studies with VLP exposure for 48 h. VLPs with Spike-D614G bound to the enteroid apical surface and was taken up; this resulted in decreased mRNA levels of ACE2, NHE3, DRA and CFTR. 4) VLP effects were determined on active anion secretion measured with the Ussing chamber/voltage clamp technique. S-D614G acutely exposed to apical surface of human ileal enteroids did not alter the short-circuit current (Isc). However, VLPS-D614G exposure to enteroids that were pretreated for ∼24 h with IL-6 plus IL-8 induced a concentration dependent increase in Isc indicating stimulated anion secretion, that was delayed in onset by ∼8 min. The anion secretion was inhibited by apical exposure to a specific calcium activated Cl channel (CaCC) inhibitor (AO1) but not by a specific CFTR inhibitor (BP027); was inhibited by basolateral exposure to the K channel inhibit clortimazole; and was prevented by pretreatment with the calcium buffer BAPTA-AM. 5) The calcium dependence of the VLP-induced increase in Isc was studied in Caco-2/BBe cells stably expressing the genetically encoded Ca2+ sensor GCaMP6s. 24 h pretreatment with IL-6/IL-8 did not alter intracellular Ca2+. However, in IL-6/IL-8 pretreated cells, VLP S-D614G caused appearance of Ca2+waves and an overall increase in intracellular Ca2+ with a delay of ∼10 min after VLP addition. We conclude that the diarrhea of COVID-19 appears to an example of a calcium dependent inflammatory diarrhea that involves both acutely stimulated Ca2+ dependent anion secretion (stimulated Isc) that involves CaCC and likely inhibition of neutral NaCl absorption (decreased NHE3 protein and mRNA and decreased DRA mRNA).


2021 ◽  
Author(s):  
Cheryl Brandenburg ◽  
Lindsey A. Smith ◽  
Michaela B.C. Kilander ◽  
Morgan S. Bridi ◽  
Yu-Chih Lin ◽  
...  

SummaryPurkinje cells (PCs) are central to cerebellar information coding and appreciation for the diversity of their firing patterns and molecular profiles is growing. Heterogeneous subpopulations of PCs have been identified that display differences in intrinsic firing properties without clear mechanistic insight into what underlies the divergence in firing parameters. Although long used as a general PC marker, we report that the calcium binding protein parvalbumin labels a subpopulation of PCs with a conserved distribution pattern across the animals examined. We trained a convolutional neural network to recognize the parvalbumin-positive subtype and create maps of whole cerebellar distribution and find that PCs within these areas have differences in spontaneous firing that can be modified by altering calcium buffer content. These subtypes also show differential responses to potassium and calcium channel blockade, suggesting a mechanistic role for variability in PC intrinsic firing through differences in ion channel composition. It is proposed that ion channels drive the diversity in PC intrinsic firing phenotype and parvalbumin calcium buffering provides capacity for the highest firing rates observed. These findings open new avenues for detailed classification of PC subtypes.


Toxics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Ignacy Gonkowski ◽  
Slawomir Gonkowski ◽  
Ewa Dzika ◽  
Joanna Wojtkiewicz

Calbindin D-28k (CB) is a calcium-binding protein widely distributed in living organisms that may act as a calcium buffer and sensory protein. CB is present in the enteric nervous system (ENS) situated in the gastrointestinal tract, which controls the majority of activities of the stomach and intestine. The influence of various doses of bisphenol A (BPA)—a chemical compound widely used in plastics production—on the number and distribution of CB-positive enteric neuronal cells in the porcine caecum was investigated with an immunofluorescence technique. The obtained results showed that low dosages of BPA resulted in an increase in the number of CB-positive neuronal cells in the myenteric (MP) and inner submucous (ISP) plexuses, whereas it did not alter the number of such neuronal cells in the outer submucous plexus (OSP). High dosages of BPA caused the increase in the amount of CB-positive perikarya in all the above-mentioned kinds of the caecal neuronal plexuses. These observations strongly suggest that CB in the ENS participates in the processes connected with the toxic activity of BPA. Most likely, the changes noted in this experiment result from the adaptive and protective properties of CB.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
D Bode ◽  
L Semmler ◽  
N Hegemann ◽  
U Primessnig ◽  
P Wakula ◽  
...  

Abstract Background In the DAPA-HF trial, SGLT inhibition reduces cardiovascular mortality in heart failure. However, the mechanism and a potential positive effect in HfpEF remain elusive. Introduction LA remodeling is a hallmark feature of HFpEF and commonly associated with LA enlargement and dysfunction. Previous studies of SGLT-2 inhibitor Empagliflozin suggest a utilization of alternative metabolites for energy consumption (i.e. ketone bodies). Additionally, alterations of sodium and calcium ion hemostasis have been reported. We investigated the effect of SGLT inhibition on mitochondrial (dys)function during atrial remodeling in HFpEF. Methods Rats (WT: Wistar Kyoto, HFpEF: ZFS-1 Obese (metabolic syndrome)) were obtained at ∼10w and fed Purina 5008 diet. At 17w, animals were randomized to treatment with either vehicle or Sota (30mg/kg/d) for 5w until primary adult cardiomyocytes were isolated for final experiments. Structural information of mitochondria was obtained with Mitotracker Red in either a glucose starved (1h incubation with mannitol) or saturated state. ROS production was assessed with H2-DCF in a starved and saturated condition. Mitochondrial calcium buffer capacity was imaged with Rhod-2 following perforation of the cellular membrane with saponin. Glycolytic dependency of calcium cycling was assessed upon glycolytic inhibition with 2-deoxyglucose during imaging of cytosolic calcium transients with Fura-2. Results In a glucose saturated state, LA cardiomyocytes in HFpEF showed increased mitochondrial density, which was ameliorated with Sota. Sota increased mitochondrial calcium buffer capacity in HFpEF, indicating a decrease in mitochondrial resting calcium. Differences in mitochondrial fission could not be detected. However, during glucose starvation cardiomyocytes showed a decrease in mitochondrial fission and ROS production with Sota. A difference in ROS production was not visible when cells were abruptly challenged with high glucose concentrations, but Sota decreased mitochondrial fission, indicating long term protective properties towards ROS. Glycolytic inhibition led to an increase of cytosolic diastolic calcium and calcium transient peak height in HFpEF vs. WT, indicating an increased glucose dependency of cytosolic calcium cycling, which was mitigated with Sota. Additionally, Sota negated an increase in diastolic calcium, when cardiomyocytes where challenged with high concentrations of glucose after starvation. Conclusion SGLT1/2 inhibition alters mitochondrial calcium uptake in HFpEF and positively affects mitochondrial structure with subsequent decreases of ROS production and enhanced calcium homeostasis. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Else-Kröner-Fresenius-Stiftung, Deutsches Zentrum für Herz-Kreislaufforschung


2020 ◽  
Vol 49 (6) ◽  
pp. 723-732
Author(s):  
Markus Pirklbauer ◽  
Lisa Fuchs ◽  
Ramona Heiss ◽  
Thomas Ratschiller ◽  
Gert Mayer

<b><i>Background/Objective:</i></b> Calcium loading has been associated with cardiovascular risk in hemodialysis (HD) patients. However, it remains to be elucidated whether alterations of intradialytic calcium buffering add to the increased cardiovascular disease burden in this high-risk population. <b><i>Methods:</i></b> Intradialytic calcium kinetics was evaluated in a cross-sectional observational study by measuring dialysate-sided ionized calcium mass balance (iCa<sub>MB</sub>), calcium buffer capacity, and change in serum calcium levels in 40 chronic HD patients during a routine HD session. A dialysate calcium of 3.5 mEq/L was used to adequately challenge calcium buffer mechanisms. Aortic pulse wave velocity and serum osteocalcin levels were measured prior to the HD session. Presence of cardiovascular disease and diabetes was assessed. <b><i>Results:</i></b> The mean dialysate-sided iCa<sub>MB</sub>, extracellular fluid ionized calcium mass gain, and buffered ionized calcium mass were 469 (±154), 111 (±49), and 358 (±145) mg/HD, respectively. The mean ionized serum calcium increase (∆iCa) was 0.42 (±0.14) mEq/L per HD. The mean intradialytic calcium buffer capacity was 73 (±18)%. Multivariate regression analysis revealed significant independent association of (1) iCa<sub>MB</sub> with the dialysate-to-blood calcium gradient at HD start and (2) intradialytic calcium buffer capacity with undercarboxylated osteocalcin. The presence of coronary heart disease was associated with higher ∆iCa but not iCa<sub>MB</sub> in the multivariate model. <b><i>Conclusions:</i></b> In line with our proof-of-concept study, we provide clinical evidence for a rapidly accessible and exchangeable calcium pool involved in intradialytic calcium regulation and for the role of osteocalcin as a potential biomarker. Our findings argue for evaluating the prognostic potential of intradialytic calcium kinetics in prospective clinical trials.


2019 ◽  
Author(s):  
Jinghua Ge ◽  
Akhil Gargey ◽  
Irina V. Nesmelova ◽  
Yuri E. Nesmelov

AbstractCalcium plays an essential role in muscle contraction, regulating actomyosin interaction by binding troponin of thin filaments. There are several buffers for calcium in muscle, and those buffers play a crucial role in the formation of the transient calcium wave in sarcomere upon muscle activation. One such calcium buffer in muscle is ATP. ATP is a fuel molecule, and the important role of MgATP in muscle is to bind myosin and supply energy for the power stroke. Myosin is not a specific ATPase, and CaATP also supports myosin ATPase activity. The concentration of CaATP in sarcomeres reaches 1% of all ATP available. Since 294 myosin molecules form a thick filament, naïve estimation gives three heads per filament with CaATP bound, instead of MgATP. We found that CaATP dissociates actomyosin slower than MgATP, thus increasing the time of the strong actomyosin binding. The rate of the basal CaATPase is faster than that of MgATPase, myosin readily produces futile stroke with CaATP. When calcium is upregulated, as in malignant hyperthermia, kinetics of myosin and actomyosin interaction with CaATP suggest that myosin CaATPase activity may contribute to observed muscle rigidity and enhanced muscle thermogenesis.


2018 ◽  
Author(s):  
C. Guerrier ◽  
D. Holcman

AbstractCalcium diffusion in the thin one hundred nanometers layer located between the plasma membrane and docked vesicles in the pre-synaptic terminal of neuronal cells mediates vesicular fusion and synaptic transmission. Accounting for the narrow-cusp geometry located underneath the vesicle is a key ingredient that defines the probability and the time scale of calcium diffusion to bind calcium sensors for the initiation of vesicular release. We study here the time scale, the calcium binding dynamics and the consequences for asynchronous versus synchronous release. To conclude, threedimensional modeling approaches and the associated coarse-grained simulations can now account efficiently for the precise co-organization of vesicles and Voltage-Gated-Calcium-Channel (VGCC). This co-organization is a key determinant of short-term plasticity and it shapes asynchronous release. Moreover, changing the location of VGCC from few nanometers underneath the vesicle modifies significantly the release probability. Finally, by modifying the calcium buffer concentration, a single synapse can switch from facilitation to depression.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Eleonora Da Pozzo ◽  
Barbara Costa ◽  
Chiara Cavallini ◽  
Lara Testai ◽  
Alma Martelli ◽  
...  

In recent years, the health-promoting effects of the citrus flavanone naringenin have been examined. The results have provided evidence for the modulation of some key mechanisms involved in cellular damage by this compound. In particular, naringenin has been revealed to have protective properties such as an antioxidant effect in cardiometabolic disorders. Very recently, beneficial effects of naringenin have been demonstrated in old rats. Because aging has been demonstrated to be directly related to the occurrence of cardiac disorders, in the present study, the ability of naringenin to prevent cardiac cell senescence was investigated. For this purpose, a cellular model of senescent myocardial cells was set up and evaluated using colorimetric, fluorimetric, and immunometric techniques. Relevant cellular senescence markers, such as X-gal staining, cell cycle regulator levels, and the percentage of cell cycle-arrested cells, were found to be reduced in the presence of naringenin. In addition, cardiac markers of aging-induced damage, including radical oxidative species levels, mitochondrial metabolic activity, mitochondrial calcium buffer capacity, and estrogenic signaling functions, were also modulated by the compound. These results suggested that naringenin has antiaging effects on myocardial cells.


2016 ◽  
Vol 365 (1) ◽  
pp. 29-50 ◽  
Author(s):  
Orsolya Kántor ◽  
Szilvia Mezey ◽  
Jennifer Adeghate ◽  
Angela Naumann ◽  
Roland Nitschke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document