delaunay refinement
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Longquan zhou ◽  
Hongjuan Wang ◽  
Xinming Lu ◽  
Wei Zhang ◽  
Xingli Zhang

Curved surface mesh generation is a key step for many areas. Here, a mesh generation algorithm for closed curved surface based on Delaunay refinement is proposed. We focus on improving the shape quality of the meshes generated and making them conform to 2-manifold. The Delaunay tetrahedralization of initial sample is generated first, the initial surface mesh which is a subset of the Delaunay tetrahedralization can be achieved. A triangle is refined by inserting a new point if it is large or of bad quality. For each sample, we also check the triangles that adjoin it whether from a topological disk. If not, the largest triangle will be refined. Finally, the surface mesh is updated after a new point is inserted into the sample. The definition of mesh size function for surface mesh generation is also put in this paper. Meshing experiments of some models demonstrate that the new algorithm is advantageous in generating high quality surface mesh, the count of mesh is suitable and can well approximate the curved surface. The presented method can be used for a wide range of problems including computer graphics, computer vision and finite element method.


2017 ◽  
Vol 10 (6) ◽  
pp. 2117-2140 ◽  
Author(s):  
Darren Engwirda

Abstract. An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi–Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.


2016 ◽  
Author(s):  
Darren Engwirda

Abstract. An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate high-quality staggered Voronoi/Delaunay dual meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Delaunay-refinement technique allows for the generation of unstructured grids that satisfy a priori constraints on minimum mesh-quality. The initial staggered Voronoi/Delaunay tessellation is iteratively improved through hill-climbing optimisation techniques. Such an approach is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling. The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type studies is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document