mammalian neuron
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 1)

2020 ◽  
Vol 117 (27) ◽  
pp. 15632-15641
Author(s):  
Brandon M. Bensel ◽  
Michael S. Woody ◽  
Serapion Pyrpassopoulos ◽  
Yale E. Goldman ◽  
Susan P. Gilbert ◽  
...  

KIF3AC is a mammalian neuron-specific kinesin-2 implicated in intracellular cargo transport. It is a heterodimer of KIF3A and KIF3C motor polypeptides which have distinct biochemical and motile properties as engineered homodimers. Single-molecule motility assays show that KIF3AC moves processively along microtubules at a rate faster than expected given the motility rates of the KIF3AA and much slower KIF3CC homodimers. To resolve the stepping kinetics of KIF3A and KIF3C motors in homo- and heterodimeric constructs and determine their transport potential under load, we assayed motor activity using interferometric scattering microscopy and optical trapping. The distribution of stepping durations of KIF3AC molecules is described by a rate (k1= 11 s−1) without apparent kinetic asymmetry. Asymmetry was also not apparent under hindering or assisting mechanical loads in the optical trap. KIF3AC shows increased force sensitivity relative to KIF3AA yet is more capable of stepping against mechanical load than KIF3CC. Interestingly, the behavior of KIF3C mirrors prior studies of kinesins with increased interhead compliance. Microtubule gliding assays containing 1:1 mixtures of KIF3AA and KIF3CC result in speeds similar to KIF3AC, suggesting the homodimers mechanically impact each other’s motility to reproduce the behavior of the heterodimer. Our observations are consistent with a mechanism in which the stepping of KIF3C can be activated by KIF3A in a strain-dependent manner, similar to application of an assisting load. These results suggest that the mechanochemical properties of KIF3AC can be explained by the strain-dependent kinetics of KIF3A and KIF3C.


2019 ◽  
Author(s):  
Brandon M. Bensel ◽  
Michael S. Woody ◽  
Serapion Pyrpassopoulos ◽  
Yale E. Goldman ◽  
Susan P. Gilbert ◽  
...  

AbstractKIF3AC is a mammalian neuron-specific kinesin-2 implicated in intracellular cargo transport. It is a heterodimer of KIF3A and KIF3C motor polypeptides which have distinct biochemical and motile properties as engineered homodimers. Single-molecule motility assays show that KIF3AC moves processively along microtubules at a rate faster than expected given the motility rates of the KIF3AA and much slower KIF3CC homodimers. To resolve the stepping kinetics of KIF3A and KIF3C motors in homo-and heterodimeric constructs, and to determine their transport potential under mechanical load, we assayed motor activity using interferometric scattering (iSCAT) microscopy and optical trapping. The distribution of stepping durations of KIF3AC molecules is described by a rate (k1 = 11 s−1) without apparent kinetic asymmetry in stepping. Asymmetry was also not apparent under hindering or assisting mechanical loads of 1 pN in the optical trap. KIF3AC shows increased force sensitivity relative to KIF3AA, yet is more capable of stepping against mechanical load than KIF3CC. Microtubule gliding assays containing 1:1 mixtures of KIF3AA and KIF3CC result in speeds similar to KIF3AC, indicating the homodimers mechanically impact each other’s motility to reproduce the behavior of the heterodimer. We conclude that the stepping of KIF3C can be activated by KIF3A in a strain-dependent manner which is similar to application of an assisting load, and the behavior of KIF3C mirrors prior studies of kinesins with increased interhead compliance. These results suggest that KIF3AC-based cargo transport likely requires multiple motors, and its mechanochemical properties arise due to the strain-dependences of KIF3A and KIF3C.Significance StatementKinesins are important long-range intracellular transporters in neurons required by the extended length of the axon and dendrites and selective cargo transport to each. The mammalian kinesin-2, KIF3AC, is a neuronal heterodimer of fast and slow motor polypeptides. Our results show that KIF3AC has a single observed stepping rate in the presence and absence of load and detaches from the microtubule rapidly under load. Interestingly, both KIF3A and assisting loads accelerate the kinetics of KIF3C. These results suggest that KIF3AC is an unconventional cargo transporter and its motile properties do not represent a combination of alternating fast and slow step kinetics. We demonstrate that the motile properties of KIF3AC represent a mechanochemistry that is specific to KIF3AC and may provide functional advantages in neurons.


2015 ◽  
Vol 16 (S1) ◽  
Author(s):  
Shreejoy J Tripathy ◽  
Dmitry Tebaykin ◽  
Brenna Li ◽  
Ogan Marcarci ◽  
Lilah Toker ◽  
...  

Author(s):  
Shiwei Huang ◽  
Sungho Hong ◽  
Erik De Schutter
Keyword(s):  

2015 ◽  
Vol 113 (10) ◽  
pp. 3474-3489 ◽  
Author(s):  
Shreejoy J. Tripathy ◽  
Shawn D. Burton ◽  
Matthew Geramita ◽  
Richard C. Gerkin ◽  
Nathaniel N. Urban

For decades, neurophysiologists have characterized the biophysical properties of a rich diversity of neuron types. However, identifying common features and computational roles shared across neuron types is made more difficult by inconsistent conventions for collecting and reporting biophysical data. Here, we leverage NeuroElectro, a literature-based database of electrophysiological properties ( www.neuroelectro.org ), to better understand neuronal diversity, both within and across neuron types, and the confounding influences of methodological variability. We show that experimental conditions (e.g., electrode types, recording temperatures, or animal age) can explain a substantial degree of the literature-reported biophysical variability observed within a neuron type. Critically, accounting for experimental metadata enables massive cross-study data normalization and reveals that electrophysiological data are far more reproducible across laboratories than previously appreciated. Using this normalized dataset, we find that neuron types throughout the brain cluster by biophysical properties into six to nine superclasses. These classes include intuitive clusters, such as fast-spiking basket cells, as well as previously unrecognized clusters, including a novel class of cortical and olfactory bulb interneurons that exhibit persistent activity at theta-band frequencies.


Author(s):  
Tripathy Shreejoy ◽  
Gerkin Richard ◽  
Savitskaya Judy ◽  
Urban Nathaniel
Keyword(s):  

2012 ◽  
Vol 21 (10) ◽  
pp. 2211-2218 ◽  
Author(s):  
Shawn J. Stochmanski ◽  
Martine Therrien ◽  
Janet Laganière ◽  
Daniel Rochefort ◽  
Sandra Laurent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document