relativistic fluids
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1400
Author(s):  
Byron P. Brassel ◽  
Sunil D. Maharaj ◽  
Rituparno Goswami

We consider the energy conditions for a dissipative matter distribution. The conditions can be expressed as a system of equations for the matter variables. The energy conditions are then generalised for a composite matter distribution; a combination of viscous barotropic fluid, null dust and a null string fluid is also found in a spherically symmetric spacetime. This new system of equations comprises the energy conditions that are satisfied by a Type I fluid. The energy conditions for a Type II fluid are also presented, which are reducible to the Type I fluid only for a particular function. This treatment will assist in studying the complexity of composite relativistic fluids in particular self-gravitating systems.


2021 ◽  
Vol 17 (4) ◽  
pp. 2093-2115
Author(s):  
Shabnam Beheshti ◽  
Marcelo M. Disconzi ◽  
Vu Hoang

2021 ◽  
Vol 89 (1) ◽  
Author(s):  
Philippe G. LeFloch ◽  
Carlos Parés ◽  
Ernesto Pimentel-García

AbstractFor the evolution of a compressible fluid in spherical symmetry on a Schwarzschild curved background, we design a class of well-balanced numerical algorithms up to third-order accuracy. We treat both the relativistic Burgers–Schwarzschild model and the relativistic Euler–Schwarzschild model and take advantage of the explicit or implicit forms available for the stationary solutions of these models. Our schemes follow the finite volume methodology and preserve the stationary solutions. Importantly, they allow us to investigate the global asymptotic behavior of such flows and determine the asymptotic behavior of the mass density and velocity field of the fluid.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Nils Andersson ◽  
Gregory L. Comer

AbstractThe relativistic fluid is a highly successful model used to describe the dynamics of many-particle systems moving at high velocities and/or in strong gravity. It takes as input physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process—e.g., drawing on astrophysical observations—an understanding of relativistic features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as colliding heavy ions in laboratory experiments, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multi-) fluid model. We focus on the variational principle approach championed by Brandon Carter and collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications of the general theory. The formalism provides a foundation for complex models, e.g., including electromagnetism, superfluidity and elasticity—all of which are relevant for state of the art neutron-star modelling.


2021 ◽  
Vol 126 (22) ◽  
Author(s):  
Fábio S. Bemfica ◽  
Marcelo M. Disconzi ◽  
Vu Hoang ◽  
Jorge Noronha ◽  
Maria Radosz

2020 ◽  
Vol 29 (15) ◽  
pp. 2030010
Author(s):  
J. Felix Salazar ◽  
Thomas Zannias

The recent monumental detection of gravitational waves by LIGO, the subsequent detection by the LIGO/VIRGO observatories of a binary neutron star merger seen in the gravitational wave signal [Formula: see text], the first photo of the event horizon of the supermassive black hole at the center of Andromeda galaxy released by the EHT telescope and the ongoing experiments on Relativistic Heavy Ion Collisions at the BNL and at the CERN, demonstrate that we are witnessing the second golden era of observational relativistic gravity. These new observational breakthroughs, although in the long run would influence our views regarding this Kosmos, in the short run, they suggest that relativistic dissipative fluids (or magnetofluids) and relativistic continuous media play an important role in astrophysical-and also subnuclear-scales. This realization brings into the frontiers of current research theories of irreversible thermodynamics of relativistic continuous media. Motivated by these considerations, we summarize the progress that has been made in the last few decades in the field of nonequilibrium thermodynamics of relativistic continuous media. For coherence and completeness purposes, we begin with a brief description of the balance laws for classical (Newtonian) continuous media and introduce the classical irreversible thermodynamics (CIT) and point out the role of the local-equilibrium postulate within this theory. Tangentially, we touch the program of rational thermodynamics (RT), the Clausius–Duhem inequality, the theory of constitutive relations and the emergence of the entropy principle in the description of continuous media. We discuss at some length, theories of non equilibrium thermodynamics that sprang out of a fundamental paper written by Müller in 1967, with emphasis on the principles of extended irreversible thermodynamics (EIT) and the rational extended irreversible thermodynamics (REIT). Subsequently, after a brief introduction to the equilibrium thermodynamics of relativistic fluids, we discuss the Israel–Stewart transient (or causal) thermodynamics and its main features. Moreover, we introduce the Liu–Müller–Ruggeri theory describing relativistic fluids. We analyze the structure and compare this theory to the class of dissipative relativistic fluid theories of divergent type developed in the late 1990 by Pennisi, Geroch and Lindblom. As far as theories of nonequilibrium thermodynamics of classical media are concerned, it is fair to state that substantial progress has been made and many predictions of the extended theories have been placed under experimental scrutiny. However, at the relativistic level, the situation is different. Although the efforts aiming to the development of a sensible theory (or theories) of nonequilibrium thermodynamics of relativistic fluids (or continuous media) spans less than a half-century, and even though enormous steps in the right direction have been taken, nevertheless as we shall see in this review, still a successful theory of relativistic dissipation is lacking.


Sign in / Sign up

Export Citation Format

Share Document