qinghai lake
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 124)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 71 (2) ◽  
pp. 3635-3646
Author(s):  
Wenzheng Yu ◽  
Jintao Cui ◽  
Yang Gao ◽  
Mingxuan Zhu ◽  
Li Shao ◽  
...  
Keyword(s):  

Author(s):  
Min Xiao ◽  
Zhaochuan Chen ◽  
Yuan Zhang ◽  
Yanan Wen ◽  
Lihai Shang ◽  
...  

The constituents and content of dissolved organic matter (DOM) in the Qilian Mountain watershed were characterized with a spectroscopic technique, especially 3-DEEM fluorescence assisted by parallel factor (PARAFAC) analysis. The level of DOM in the surrounding area of Qinghai lake (thereafter the lake in this article specifically refers to Qinghai Lake)was highest at 9.45 mg C·L−1 and about 3 times less (3.09 mg C·L−1) in a cropland aquatic regime (the lowest value). In general, DOM was freshly autochthonously generated by plankton and plant debris, microorganisms and diagenetic effects in the aquatic environment (FI > 1.8). Component 1 (humic acid-like) and 3 (fulvic acid-like) determined the humification degree of chromophoric dissolved organic matter (CDOM). The spatial variation of sulfate and nitrate in the surrounding water regime of the lake revealed that organic molecules were mainly influenced by bacterial mediation. Mineral disintegration was an important and necessary process for fluorescent fraction formation in the cropland water regime. Exceptionally, organic moiety in the unused land area was affected by anespecially aridclimate in addition to microbial metabolic experience. Salinity became the critical factor determining the distribution of DOM, and the total normalized fluorescent intensity and CDOM level were lower in low-salinity circumstances (0.2–0.5 g·L−1) with 32.06 QSU and 1.38 m−1 in the grassland area, and higher salinity (0.6~0.8 g·L−1) resulted in abnormally high fluorescence of 150.62 QSU and absorption of 7.83 m−1 in the cropland water regime. Climatic conditions and microbial reactivity controlled by salinity were found to induce the above results. Our findings demonstrated that autochthonous inputs regulated DOM dynamics in the Qilian Mountains watershed of high altitude.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunli Li ◽  
Yonghui Li ◽  
Xinwei Li ◽  
Li Ma ◽  
Yuanming Xiao ◽  
...  

Climate, land-use changes, and nitrogen (N) deposition strongly impact plant primary productivity, particularly in alpine grassland ecosystems. In this study, the differential responses of plant community primary productivity to N and phosphorus (P) nutrient application were investigated in the natural (NG) and “Grain for Green” restored (RG) alpine grasslands by a continuous 3-year experiment in the Qinghai Lake Basin. N addition only significantly promoted plant aboveground biomass (AGB) by 42% and had no significant effect on belowground biomass (BGB) and total biomass (TB) in NG. In comparison with NG, N addition elevated AGB and BGB concurrently in RG by 138% and 24%, respectively, which further significantly increased TB by 41% in RG. Meanwhile, N addition significantly decreased BGB and the AGB ratio (R/S) both in NG and RG. Compared with N addition, P addition did not perform an evident effect on plant biomass parameters. Additionally, AGB was merely negatively influenced by growing season temperatures (GST) under the N addition treatment in NG. AGB was negatively associated with GST but positively related to growing season precipitation (GSP) in RG. By contrast, changes in the R/S ratio in RG were positively correlated with GST and negatively related to GSP. In sum, the results revealed that plant community biomass exhibited convergent (AGB and R/S) and divergent (BGB and TB) responses to N addition between NG and RG. In addition, the outcomes suggested that climate warming would enhance plant biomass allocation to belowground under ongoing N deposition, and indicated the significance of precipitation for plant growth and AGB accumulation in this restored alpine grassland ecosystem.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3481
Author(s):  
Zheng Li ◽  
Zhenghui Fu ◽  
Yang Zhang ◽  
Yunyan Guo ◽  
Feifei Che ◽  
...  

Dissolved organic matter (DOM) has a great impact on the main pollution indicators of lakes (such as chemical oxygen demand, COD). Therefore, DOM is the research basis for understanding the meaning of the water environment and the laws of the migration and transformation of pollutants. Qinghai Lake is one of the world’s typical inland plateau lake wetlands. It plays important roles in improving and regulating the climate and in promoting a virtuous regional ecological cycle. In recent years, with the acceleration of urbanization and the rapid development of tourism, under the background of climate change, and with grassland degradation and precipitation change, the whole basin of Qinghai Lake has been facing great ecological pressure. In order to comprehensively explore the water environment of Qinghai Lake and to protect the sustainable development of the basin, a systematic study was carried out on the whole basin of Qinghai Lake. The results show the following: (1) from 2010 to 2020, the annual average value of CODCr in Qinghai Lake fluctuated in the range from class III to class V according to the surface water environmental quality standard, showing first a downward trend and then an upward trend. (2) The concentration of CDOM in Qinghai Lake had obvious temporal and spatial changes. (3) The spatial distribution of the total fluorescence intensity of FDOM in water was also different in different seasons. However, in the three surveys, the area with the highest total fluorescence intensity of FDOM in the water body appeared near Erlangjian in the south of Qinghai Province, indicating that anthropogenic sources are the main controlling factors of dissolved organic matter in the lake.


Author(s):  
Rui Guo ◽  
Xiaoying Liu ◽  
Hakjun Song

It seems that people’s quality of life can be positively influenced through bicycle tourism. Bicycle tourism can be an effective measure to enhance serious leisure, tourism satisfaction, and quality of life. To verify this empirically, a survey was conducted of bicycle tourists who visited Qinghai Lake in China during an international road bike race. The purpose of the present research is to prove the association between latent variables related to bicycle tourism through statistical analysis. For this, hypothetical relationships based on tourism motivation, serious leisure, tourism satisfaction, and quality of life were presented as research models. As a result of empirical analysis, it was analyzed that friends and nature had an effect on serious leisure among the motivation of bicycle tourism. In addition, it was found that the level of serious leisure for bicycle tourism exerted a positive influence on the satisfaction and quality of life. This suggests that bicycle tourism can improve the quality of life during travel to Qinghai lake by bicycle and revealed the crucial role in relationships is serious leisure.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pu Zhang ◽  
Chenyang Cao ◽  
Xiangzhong Li ◽  
Xuezheng Pei ◽  
Chi Chen ◽  
...  

The dissolved uranium (U) content in the water column of saline lakes varies little between ice-free seasons throughout the whole water column. Such uniformity allows for the potential absolute dating and/or paleohydrologic interpretations of lake sediments and biogenic shell materials using U isotopes. Before using these methods in cold regions, however, it is necessary to evaluate the effects that ice freeze-thaw processes have on the distribution of U isotopes in saline lake waters, and to determine the amount of variation in U isotopic values when such processes occur. In this paper, we collected ice and dissolved water samples from six lakes with variable salinity in February 2021. Five groundwater and three water samples from rivers into Qinghai Lake were sampled in November 2020. The sampled water was analyzed for dissolved concentrations of 238U and the activity ratio of 234U/238U ([234U/238U]AR). The results show that the 238U concentration of ice samples was less than that of the underlying water. The [234U/238U]AR of ice in the five saline lakes was similar to that of the underlying water with less than a 10‰ variation, suggesting no observable fractionation between ice and dissolved water. Thus, the ice freeze-thaw processes have almost no effect on the uranium content and [234U/238U]AR of the sampled saline lakes, which were characterized by a limited recharge volume from surface runoff, groundwater, and ice volume, namely the close saline lake in arid alpine background. The results from the indoor freeze-thaw experiments also showed that the U isotopic composition of Qinghai Lake waters and ice were similar with the 238U concentration of the ice was about 40% of that of the dissolved lake water, supporting the data obtained from natural saline lakes. The above results provide important insights into whether it is feasible to use U isotopes for absolute dating and/or paleohydrologic analysis of lake sediments or biogenic shell materials. In addition, the results are important for evaluating the [234U/238U]AR and uranium concentrations in seawater when there exists a process of melting polar ice, and for determining the initial delta 234U variations needed for dating of coral and other fossil materials.


2021 ◽  
Author(s):  
Zheng Li ◽  
Zhenghui Fu ◽  
Yang Zhang ◽  
Yunyan Guo ◽  
Feifei Che ◽  
...  

Abstract Dissolved organic matter (DOM) has a great influence on the main pollution indexes of lakes (such as COD). Therefore, DOM research is the basis for understanding the water environmental quality and the law of pollutant migration and transformation in the basin. In this study, the water quality monitoring data of Qinghai Lake water body and 8 rivers around the lake from 2010 to 2020 were collected, and the dissolved organic matter (DOM) was synchronously sampled in May, September and October 2020. The optical characteristics of DOM, the temporal and spatial distribution of CDOM and the fluorescence spectrum and fluorescence component characteristics of FDOM were analyzed and studied. The results show that: (1) From 2010 to 2020, the annual mean value of CODCr of Qinghai Lake water body fluctuates in the range of Class III to Class V according to the environmental quality standard of the surface water, and shows a downward trend first and then an upward one. In general, the mean value of CODCr concentration in Qinghai Lake water body is at a high level and varies slightly among different months. (2) The mean value of CODCr concentration of the eight main rivers entering Qinghai Lake from 2010 to 2020 can be sorted from lowest to highest as follows: Ganzi River, Buha River, Jilmeng River, Hargai River, Shaliu River, Quanji River, HeMa River, and DaoTang River. (3) The concentration of CDOM in Qinghai Lake shows not only obvious seasonal variation (October, September and May, in the descending order) but also spatial variation. (4) The three-dimensional fluorescence spectrum matrix data of DOM in Qinghai Lake were analyzed by PARAFAC model, and four DOM fluorescence components with single maximum emission wavelength were analyzed.


Sign in / Sign up

Export Citation Format

Share Document