Nanomanufacturing and Metrology
Latest Publications


TOTAL DOCUMENTS

114
(FIVE YEARS 83)

H-INDEX

9
(FIVE YEARS 6)

Published By Springer-Verlag

2520-8128, 2520-811x

Author(s):  
Nathan Black ◽  
David Edwards ◽  
Niall Browne ◽  
Joseph G. M. Guy ◽  
Niyorjyoti Sharma ◽  
...  

AbstractThe realization of a mixed-phase microstructure in strained BiFeO3 (BFO) thin films has led to numerous novel effects derived from the coexistence of the tetragonal-like monoclinic phase (T phase) and rhombohedral-like monoclinic phase (R phase). Strong strain and polarization differences between the phases should result in a high level of transformation plasticity, which enables the continuous alteration of the relative proportion of R and T states in response to external forces. Although the potential for utilizing such plasticity to control mixed-phase populations under external stimuli is evident, direct experimental evidence backed by equilibrium predictions has not yet been fully demonstrated. Here we demonstrate deterministic control of mixed-phase populations in an epitaxially strained BFO thin film through the application of localized stresses and electric fields in a reversible manner. The results illustrate and rationalize deterministic control of mixed phases in strained BFO films, which could be crucial in tuning their functional properties. The findings also highlight a new multiparametric technique in the scanning probe lithography toolbox based on tip-assisted electric and strain field manipulation of functional properties that might find application beyond the ferroelectric domain and structural phase lithography.


Author(s):  
Jiao Bai ◽  
Yingzuo Wang ◽  
Xiaohao Wang ◽  
Qian Zhou ◽  
Kai Ni ◽  
...  

AbstractIn this study, three-probe error separation was developed with three chromatic confocal displacement sensors for roundness measurement. Here, the harmonic suppression is discussed first to set suitable orientation angles among three sensors. Monte Carlo simulation is utilized to test the error separation and optimize the orientation angles and off-axial distance. The experimental setup is established using chromatic confocal sensors with a precise rotary platform. The experimental results show that the measured roundness with an orientation-angle combination of (0°, 90.1°, and 178.6°) is much better than that of another nonoptimal selection (0°, 90.4°, and 177.4°). The roundness error is only 0.7% between the proposed measurement system and an expensive ultraprecision roundness meter. Furthermore, it is proven that the eccentricity distance should be decreased as small as possible to improve the measurement accuracy. In sum, this paper proposes a feasible method for roundness measurement with reliable simulations, easily integrated sensors, and an ordinary precision rotary platform.


Author(s):  
Matthew McCormack ◽  
Fengzhou Fang ◽  
Jufan Zhang

AbstractConjugate heat transfer is numerically investigated using a three-dimensional computational fluid dynamics approach in various microchannel geometries to identify a high-performance cooling method for piezoelectric ceramic stacks and spindle units in high-precision machines. Straight microchannels with rectangular cross sections are first considered, showing the performance limitations of decreasing the size of the microchannels, so other solutions are needed for high applied heat fluxes. Next, many microchannel designs, focusing on streamwise geometric variation, are compared to straight channels to assess their performances. Sinusoidally varying channels produce the highest heat transfer rates of those studied. Thus, their optimization is considered at a channel width and height of 35 and 100 μm, respectively. Heat transfer increases as the amplitude and spatial frequencies of the channels increase due to increased interfacial surface area and enhanced Dean flow. The highest performance efficiencies are observed at intermediate levels of amplitude and frequency, with efficiency decreasing as these geometric parameters are increased further at the onset of flow separation. The sinusoidal channel geometries are then optimized with respect to minimizing the system’s pressure drop for all applied heat fluxes between 5690 and 6510 kW/m2. Doing so created an optimal geometry curve and showed that all geometries in this region had amplitudes close to 40 μm. Therefore, imposing a fixed heat flux requirement for a case study of cooling piezoelectric ceramics, the optimized sinusoidal geometry decreases the system pressure drop by 79% relative to a straight channel while maintaining a larger minimum feature size.


Author(s):  
Peizhi Wang ◽  
Jinshi Wang ◽  
Fengzhou Fang

AbstractThis paper presents a new approach for material removal on silicon at atomic and close-to-atomic scale assisted by photons. The corresponding mechanisms are also investigated. The proposed approach consists of two sequential steps: surface modification and photon irradiation. The back bonds of silicon atoms are first weakened by the chemisorption of chlorine and then broken by photon energy, leading to the desorption of chlorinated silicon. The mechanisms of photon-induced desorption of chlorinated silicon, i.e., SiCl2 and SiCl, are explained by two models: the Menzel–Gomer–Redhead (MGR) and Antoniewicz models. The desorption probability associated with the two models is numerically calculated by solving the Liouville–von Neumann equations for open quantum systems. The calculation accuracy is verified by comparison with the results in literatures in the case of the NO/Pt (111) system. The calculation method is then applied to the cases of SiCl2/Si and SiCl/Si systems. The results show that the value of desorption probability first increases dramatically and then saturates to a stable value within hundreds of femtoseconds after excitation. The desorption probability shows a super-linear dependence on the lifetime of excited states.


Author(s):  
Shunyu Chang ◽  
Yanquan Geng ◽  
Yongda Yan

AbstractAs one of the most widely used nanofabrication methods, the atomic force microscopy (AFM) tip-based nanomachining technique offers important advantages, including nanoscale manipulation accuracy, low maintenance cost, and flexible experimental operation. This technique has been applied to one-, two-, and even three-dimensional nanomachining patterns on thin films made of polymers, metals, and two-dimensional materials. These structures are widely used in the fields of nanooptics, nanoelectronics, data storage, super lubrication, and so forth. Moreover, they are believed to have a wide application in other fields, and their possible industrialization may be realized in the future. In this work, the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented. First, the state of the structures machined on thin films is reviewed according to the type of thin-film materials (i.e., polymers, metals, and two-dimensional materials). Second, the related applications of tip-based nanomachining to film machining are presented. Finally, the current situation of this area and its potential development direction are discussed. This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.


Author(s):  
Shraddha Supreeti ◽  
Ralf Schienbein ◽  
Patrick Feßer ◽  
Florian Fern ◽  
Martin Hoffmann ◽  
...  

AbstractUniform molding and demolding of structures on highly curved surfaces through conformal contact is a crucial yet often-overlooked aspect of nanoimprint lithography (NIL). This study describes the development of a NIL tool and its integration into a nanopositioning and nanomeasuring machine to achieve high-precision orthogonal molding and demolding for soft ultraviolet-assisted NIL (soft UV-NIL). The process was implemented primarily on the edges of highly curved plano-convex substrates to demonstrate structure uniformity on the edges. High-resolution nanostructures of sub-200-nm lateral dimension and microstructures in the range of tens of microns were imprinted. However, the nanostructures on the edges of the large, curved substrates were difficult to characterize precisely. Therefore, microstructures were used to measure the structure fidelity and were characterized using profilometry, white light interferometry, and confocal laser scanning microscopy. Regardless of the restricted imaging capabilities at high inclinations for high-resolution nanostructures, the scanning electron microscope (SEM) imaging of the structures on top of the lens substrate and at an inclination of 45° was performed. The micro and nanostructures were successfully imprinted on the edges of the plano-convex lens at angles of 45°, 60°,and 90° from the center of rotation of the rotating NIL tool. The method enables precise imprinting at high inclinations, thereby presenting a different approach to soft UV-NIL on curved surfaces.


Author(s):  
Ingo Ortlepp ◽  
Thomas Fröhlich ◽  
Roland Füßl ◽  
Johann Reger ◽  
Christoph Schäffel ◽  
...  

AbstractThe field of optical lithography is subject to intense research and has gained enormous improvement. However, the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies. This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable: custom design and solutions for specific applications will dominate future development (Fritze in: Panning EM, Liddle JA (eds) Novel patterning technologies. International society for optics and photonics. SPIE, Bellingham, 2021. 10.1117/12.2593229). For this reason, new aspects arise for future lithography, which is why enormous effort has been directed to the development of alternative fabrication technologies. Yet, the technologies emerging from this process, which are promising for coping with the current resolution and accuracy challenges, are only demonstrated as a proof-of-concept on a lab scale of several square micrometers. Such scale is not adequate for the requirements of modern lithography; therefore, there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies. Similar challenges arise because of the technical progress in various other fields, realizing new and unique functionalities based on nanoscale effects, e.g., in nanophotonics, quantum computing, energy harvesting, and life sciences. Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks, which are available at the Technische Universität Ilmenau in the form of nanopositioning and nanomeasuring (NPM) machines. With this equipment, the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters.


Author(s):  
Hammad Younes ◽  
Ding Lou ◽  
Haiping Hong ◽  
Huahui Chen ◽  
Hongtao Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document