transient problems
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Daniel Seibel

AbstractTime-domain Boundary Element Methods (BEM) have been successfully used in acoustics, optics and elastodynamics to solve transient problems numerically. However, the storage requirements are immense, since the fully populated system matrices have to be computed for a large number of time steps or frequencies. In this article, we propose a new approximation scheme for the Convolution Quadrature Method powered BEM, which we apply to scattering problems governed by the wave equation. We use $${\mathscr {H}}^2$$ H 2 -matrix compression in the spatial domain and employ an adaptive cross approximation algorithm in the frequency domain. In this way, the storage and computational costs are reduced significantly, while the accuracy of the method is preserved.


Author(s):  
Gabriela Berenice Diaz Cortés ◽  
Cornelis Vuik ◽  
Jan-Dirk Jansen

AbstractWe explore and develop a Proper Orthogonal Decomposition (POD)-based deflation method for the solution of ill-conditioned linear systems, appearing in simulations of two-phase flow through highly heterogeneous porous media. We accelerate the convergence of a Preconditioned Conjugate Gradient (PCG) method achieving speed-ups of factors up to five. The up-front extra computational cost of the proposed method depends on the number of deflation vectors. The POD-based deflation method is tested for a particular problem and linear solver; nevertheless, it can be applied to various transient problems, and combined with multiple solvers, e.g., Krylov subspace and multigrid methods.


Sign in / Sign up

Export Citation Format

Share Document