corotational rate
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
S. Alireza Momeni ◽  
Mohsen Asghari

In Hypo-elastic constitutive models an objective rate of the Cauchy stress tensor is expressed in terms of the current state of the stress and the deformation rate tensor D in a way that the dependency on the latter is a homogeneously linear one. In this work, a type of grade-one hypo-elastic models (i.e. models with linear dependency of the hypo-elasticity tensor on the stress) is considered for isotropic materials based on the objective corotational rates of stress. A positive real parameter denoted by n is involved in the considered type. Different values can be selected for this parameter, each selection leads to a specific model within the class of grade-one hypo-elasticity. The spin of the associated corotational rate is also dependent on the parameter n. In the special case of n=0, the corresponding hypo-elastic model reduces to a grade-zero one with the logarithmic rate of stress; noting that this rate is a corotational rate associated with the logarithmic spin tensor. Moreover, by choosing n=2, the model reduces to a grade-one hypo-elastic model with the Jaumann rate, i.e. the corotational rate associated with the vorticity spin tensor. As case studies, the simple shear problem is investigated with utilizing the considered type of hypo-elastic models with various values for parameter n, and the curves for the stress-shear response are depicted.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Amin Eshraghi ◽  
Katerina D. Papoulia ◽  
Hamid Jahed

An integrable Eulerian rate formulation of finite deformation elasticity is developed, which relates the Jaumann or other objective corotational rate of the Kirchhoff stress with material spin to the same rate of the left Cauchy–Green deformation measure through a deformation dependent constitutive tensor. The proposed constitutive relationship can be written in terms of the rate of deformation tensor in the form of a hypoelastic material model. Integrability conditions, under which the proposed formulation yields (a) a Cauchy elastic and (b) a Green elastic material model are derived for the isotropic case. These determine the deformation dependent instantaneous elasticity tensor of the material. In particular, when the Cauchy integrability criterion is applied to the stress-strain relationship of a hyperelastic material model, an Eulerian rate formulation of hyperelasticity is obtained. This formulation proves crucial for the Eulerian finite strain elastoplastic model developed in part II of this work. The proposed model is formulated and integrated in the fixed background and extends the notion of an integrable hypoelastic model to arbitrary corotational objective rates and coordinates. Integrability was previously shown for the grade-zero hypoelastic model with use of the logarithmic (D) rate, the spin of which is formulated in principal coordinates. Uniform deformation examples of rectilinear shear, closed path four-step loading, and cyclic elliptical loading are presented. Contrary to classical grade-zero hypoelasticity, no shear oscillation, elastic dissipation, or ratcheting under cyclic load is observed when the simple Zaremba–Jaumann rate of stress is employed.


Author(s):  
Kamyar Ghavam ◽  
Reza Naghdabadi

In this paper based on the multiplicative decomposition of the deformation gradient, the plastic spin tensor and the plastic spin corotational rate are introduced. Using this rate (and also log-rate), an elastic-plastic constitutive model for hardening materials are proposed. In this model, the Armstrong-Frederick kinematic hardening and the isotropic hardening equations are used. The proposed model is solved for the simple shear problem with the material properties of the stainless steel SUS 304. The results are compared with those obtained experimentally by Ishikawa [1]. This comparison shows a good agreement between the results of proposed theoretical model and the experimental data. As another example, the Prager kinematic hardening equation is used. In this case, the stress results are compared with those obtained by Bruhns et al. [2], in which they used the additive decomposition of the strain rate tensor.


Sign in / Sign up

Export Citation Format

Share Document