strain rate tensor
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 32)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 2116 (1) ◽  
pp. 012015
Author(s):  
Aimad Er-Raiy ◽  
Radouan Boukharfane ◽  
Linda Alzaben ◽  
Matteo Parsani

Abstract In the framework of turbulence-flame interaction, the flame is characterized by the gradient of a reactive scalar such as the progress variable, whereas the turbulence is represented by the vorticity and the strain rate. Quantitative assessment of this interaction is performed trough the study of the coupled transport between these quantities that are subject to the effects of heat release and chemical reactions. The present analysis aims at improving the understanding of the small scale turbulence – flame interaction properties, through the introduction of an additive decomposition of the strain rate and vorticity fields into their local and non-local components. The respective role of the local and non-local effects is studied for a broad range of Karlovitz numbers, by virtue of direct numerical simulations (DNS) of turbulent, premixed, lean, and statistically planar flames of methane-air. In the conditions of the present study, the alignment between flame front normals and the strain rate is found to be dominated by the local contribution from the strain rate tensor.


2021 ◽  
Vol 929 (1) ◽  
pp. 012010
Author(s):  
A N Mansurov

Abstract We present detailed pictures of contemporary earth crust strain rate tensor values for territories of Pamir and its surroundings computed by triplets of GPS observations’ points. We characterize directions and intensity of contemporary tectonic activity at some fault zones.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1910
Author(s):  
Simona Fialová ◽  
František Pochylý

This article is focused on the derivation of constitutive equations for magnetic liquids. The results can be used for both ferromagnetic and magnetorheological fluids after the introduced simplifications. The formulation of constitutive equations is based on two approaches. The intuitive approach is based on experimental experience of non-Newtonian fluids, which exhibit a generally non-linear dependence of mechanical stress on shear rate; this is consistent with experimental experience with magnetic liquids. In these general equations, it is necessary to determine the viscosity of a liquid as a function of magnetic induction; however, these equations only apply to the symmetric stress tensor and can only be used for an incompressible fluid. As a result of this limitation, in the next part of the work, this approach is extended by the asymmetry of the stress tensor, depending on the angular velocity tensor. All constitutive equations are formulated in Cartesian coordinates in 3D space. The second approach to determining constitutive equations is more general: it takes the basis of non-equilibrium thermodynamics and is based on the physical approach, using the definition of density of the entropy production. The production of entropy is expressed by irreversible thermodynamic flows, which are caused by the effect of generalized thermodynamic forces after disturbance of the thermodynamic equilibrium. The dependence between fluxes and forces determines the constitutive equations between stress tensors, depending on the strain rate tensor and the magnetization vector, which depends on the intensity of the magnetic field. Their interdependencies are described in this article on the basis of the Curie principle and on the Onsager conditions of symmetry.


Author(s):  
Irwan Meilano ◽  
Rino Salman ◽  
Suchi Rahmadani ◽  
Qibin Shi ◽  
Susilo Susilo ◽  
...  

Abstract The 26 September 2019 Mw 6.5 Ambon earthquake has been the largest instrumentally recorded event to occur in Ambon, the capital city of Maluku Islands, eastern Indonesia, and ruptured a previously unmapped active fault. In this study, we use seismic and geodetic data to investigate the source characteristics of the event. Our results show that the rupture process was complex in both the rupture initiation and slip directions. In addition, the rupture was mostly strike-slip motion with normal component and pure reverse slip in the north of the inverted fault. Our analysis of campaign and continuous Global Positioning System (GPS) velocity fields estimates that the fault has a 4.9 [4.0, 5.5] mm/yr slip rate with an earthquake recurrence interval of 115 [102, 141] yr. In addition, a comparison of the horizontal strain-rate tensor derived from GPS velocity fields with historical earthquake data shows that Ambon Island and the nearby regions have a high strain accumulation rate correlated with the distribution of Mw≥6 earthquakes, indicating that the regions are seismically active and possibly will experience more Ambon-type earthquakes in the future.


Author(s):  
Roman Sivak ◽  
Iryna Нunko ◽  
Roman Zalizniak

Methods of theoretical solution of problems in the processing of metals by pressure are insufficiently developed for practical use in the development and implementation of new technologies and improvement of existing ones. To meet the stringent requirements for the accuracy of determining the stress-strain state, it is necessary to have reliable information about the evolution of the development of the plastic deformation process at each point of the metal from the very beginning of the deformation. This will allow to obtain with high accuracy the important characteristics of the technological heredity of the products that they acquire as a result of their plastic processing. The first and important step in the calculations of the stress-strain state is to obtain the kinematic characteristics of the plastic flow of metal in the form of analytical dependences, which will formulate the patterns of deformation in the technological processes of metal forming. The article considers the possibility of applying the method of current functions to determine the components of the strain rate tensor in established stationary processes of plastic deformation. It is assumed that in the case of axisymmetric plastic deformation of a metal in a channel with curvilinear boundaries, the kinematics of the process is similar to a plane flow. In obtaining the equations, the differential equation of current lines taking into account the incompressibility condition was used to determine the components of the strain rate tensor. To explain the physical meaning of the current functions, two infinitely close current lines were considered in the flow plane, and an expression was obtained for the flow through a finite transverse current tube. In the absence of radial velocity components at the boundaries, constraints are obtained that are imposed on derivatives of current functions at these boundaries. The developed method of calculating the kinematic characteristics of plastic deformation for established axisymmetric stationary processes will simplify the mathematical processing of the obtained results and increase the reliability of the determination of the stress-strain state.


2021 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Joan Gomez-Paz ◽  
J. M. McDonough ◽  
Mahfuzul MD Is ◽  
Yiannis Andreopoulos ◽  
...  

Abstract Image-based computational fluid dynamics (CFD) has become a new capability for determining wall stresses of pulsatile flows. However, a computational platform that directly connects image information to pulsatile wall stresses is lacking. Prevailing methods rely on manual crafting of a hodgepodge of multidisciplinary software packages, which is usually laborious and error prone. We present a new technique to compute wall stresses in image-based pulsatile flows using the lattice Boltzmann method (LBM). The novelty includes: (1) a unique image processing to extract flow domain and local wall normality, (2) a seamless connection between image extraction and CFD, (3) an en-route calculation of strain-rate tensor, and (4) GPU acceleration (not included here). We first generalize the streaming operation in the LBM and then conduct an application study for laminar and turbulent pulsatile flows in an image-based pipe (Reynolds number: 10 to 5000). The computed pulsatile velocity and shear stress are in good agreement with Womersley solutions for laminar flows and concurrent laboratory measurements for turbulent flows. This technique is being used to study (1) the hemodynamic wall stresses in inner choroid endothelium, (2) the drag force in sand flows, and (3) effects of waste streams on ion exchange kinetics in porous media.


2021 ◽  
Vol 5 ◽  
pp. 50-65
Author(s):  
Wei Sun ◽  
Liping Xu

In this paper, an investigation into the effect of explicit non-linear turbulence modelling on anisotropic turbulence flows is presented. Such anisotropic turbulence flows are typified in the corner separations in turbomachinery. The commonly used Reynolds-Averaged Navier-Stokes (RANS) turbulence closures, in which the Reynolds stress tensor is modelled by the Boussinesq (linear) constitutive relation with the mean strain-rate tensor, often struggle to predict corner separation with reasonable accuracy. The physical reason for this modelling deficiency is partially attributable to the Boussinesq hypothesis which does not count for the turbulence anisotropy, whilst in a corner separation, the flow is subject to three-dimensional (3D) shear and the effects due to turbulence anisotropy may not be ignored. In light of this, an explicit non-linear Reynolds stress-strain constitutive relation developed by Menter et al. is adopted as a modification of the Reynolds-stress anisotropy. Coupled with the Menter’s hybrid "k-ω" ⁄"k-ε" turbulence model, this non-linear constitutive relation gives significantly improved predictions for the corner separation flows within a compressor cascade, at both the design and off-design flow conditions. The mean vorticity field are studied to further investigate the physical reasons for these improvements, highlighting its potential for the widespread applications in the corner separation prediction.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Miao Guo ◽  
Xuelin Tang ◽  
Xiaoqin Li ◽  
Fujun Wang ◽  
Xiaoyan Shi

Abstract In this paper, the lattice Boltzmann method-large eddy simulation (LBM-LES) model was combined with the volume of fluid (VOF) method and used to simulate vortex flow in a typical pump intake. The strain rate tensor in the LES model is locally calculated utilizing nonequilibrium moments based on Chapman–Enskog expansion, and the bounce-back scheme is used for nonslip condition on the solid wall and VOF method for the free surface. The evolution of all kinds of cells on the free surface is based on the mass exchange in the VOF method, i.e., lattice Boltzmann-single phase (LB-SP) free surface model. The introduction of the external force terms is established through adding corresponding expressions on the right of the lattice Boltzmann equation (LBE), and by modifying the velocity. The predicted vortex flow patterns (core location and strength of the vortex) and velocity correlate with the experiments undertaken with the physical model. A comparison of the results demonstrates the feasibility and stability of the model and the numerical method in predicting vortex flows inside pump intakes. The model developed and presented in this paper provides a new analysis method of vortex flow patterns in pump intake from a mesoscopic perspective, enriches the relevant technologies, and makes corresponding contributions to further engineering applications.


2021 ◽  
Author(s):  
Aleksander Szwed ◽  
Inez Kamińska

AbstractIn the paper, a pragmatic approach to finding the dual formulation for isotropic perfectly plastic materials given a dissipation potential dependent on three cylindrical invariants and involving the Ottosen shape function is proposed and illustrated by examples. The main goal is to provide instructions on how to perform the Legendre transformation used when passing from a dissipation potential to its conjugate yield condition and offer some suggestions regarding calibration for particular potentials dependent on the trace of the strain rate tensor and the product of the norm of its deviator and the Ottosen shape function, which covers a wide class of engineering materials. The classic framework for constitutive modelling of thermodynamically consistent materials within the small deformation theory is used. First, general formulae connecting a dissipation potential dependent on three invariants of the strain rate tensor to the coupled yield condition are derived. Then, they are narrowed down for the aforementioned case of dissipation functions dependent on the Lode angle in a way proposed by Ottosen. Finally, three examples are given involving classical potentials: Beltrami’s, Drucker–Prager’s and Mises–Schleicher’s generalised potential using the shape function. Detailed calculations exposing the introduced technique are performed. Also, a method of the calibration of such potentials leading to explicit mathematical formulae is demonstrated, based on the typical tests located on the tension and compression meridians.


Sign in / Sign up

Export Citation Format

Share Document