Constitutive modeling of temperature and strain rate dependent elastoplastic hardening materials using a corotational rate associated with the plastic deformation

2011 ◽  
Vol 27 (9) ◽  
pp. 1445-1455 ◽  
Author(s):  
K. Ghavam ◽  
R. Naghdabadi
Author(s):  
R.C. Picu

This article presents a review of the strain rate-dependent mechanical behavior of aluminum and its commercial alloys. The importance of strain rate sensitivity (SRS) stems from its relation with ductility and formability. Plastic deformation is stable and localization less likely in alloys with higher SRS. After discussing the basic formulation used to interpret experimental data, the methods used to measure the SRS parameter are presented. This is followed by a brief review of the main mechanisms that render the flow stress sensitive to the deformation rate, including mechanisms leading to positive and negative SRS. The generic dependence of the SRS parameter on the strain, temperature, and strain rate are further presented using data for pure Al. The effect of alloying is analyzed in the context of solid solutions and precipitated commercial alloys. Results on solid solutions are discussed separately at low and elevated temperatures in order to evidence the role of solute diffusion on SRS. This article ends with a brief discussion of the grain size dependence of SRS, with emphasis on recent efforts to produce nanocrystalline and ultrafine-grained materials by severe plastic deformation.


2007 ◽  
Vol 22 (2) ◽  
pp. 258-263 ◽  
Author(s):  
B.C. Wei ◽  
L.C. Zhang ◽  
T.H. Zhang ◽  
D.M. Xing ◽  
J. Das ◽  
...  

The strain rate dependence of plastic deformation of Ce60Al15Cu10Ni15 bulk metallic glass was studied by nanoindentation. Even though the ratio of room temperature to the glass transition temperature was very high (0.72) for this alloy, the plastic deformation was dominated by shear banding under nanoindentation. The alloy exhibited a critical loading rate dependent serrated flow feature. That is, with increasing loading rate, the alloy exhibited a transition from less prominent serrated flow to pronounced serrated flow during continuous loading but from serrated to smoother flow during stepped loading.


1997 ◽  
Vol 119 (3) ◽  
pp. 216-222 ◽  
Author(s):  
E. M. Arruda ◽  
S. Ahzi ◽  
Y. Li ◽  
A. Ganesan

We examine the strain rate dependent, large plastic deformation in isotropic semi-crystalline polypropylene at room temperature. Constant strain rate uniaxial compression tests on cylindrical polypropylene specimens show very little true strain softening under quasi-static conditions. At high strain rates very large amounts (38 percent) of apparent strain softening accompanied by temperature rises are recorded. We examine the capability of a recently proposed constitutive model of plastic deformation in semi-crystalline polymers to predict this behavior. We neglect the contribution of the amorphous phase to the plastic deformation response and include the effects of adiabatic heating at high strain rates. Attention is focused on the ability to predict rate dependent yielding, strain softening, strain hardening, and adiabatic temperature rises with this approach. Comparison of simulations and experimental results show good agreement and provide insight into the merits of using a polycrystalline modeling assumption versus incorporating the amorphous contribution. Discrepancies between experiments and model predictions are explained in terms of expectations associated with neglecting the amorphous deformation.


1998 ◽  
Vol 35 (2) ◽  
pp. 364-373 ◽  
Author(s):  
AMP Wedage ◽  
N R Morgenstern ◽  
D H Chan

Plasticity theory is extended to incorporate strain rate effects on the residual shear strength of clays. The clay is assumed to behave elastically before yielding and then in a perfectly plastic manner with no volume change during yielding. The Mohr-Coulomb failure criterion is used in the rate-dependent model in which the strain rate affects the mobilized effective friction angle of the material. During initial yielding and subsequent plastic deformation, the stress and strain states at a point will satisfy the rate-dependent yield function (loading function). When the effective plastic strain rate decreases to a threshold strain value, the loading surface moves, or collapses, to the static yield surface. A constant volume flow rule is used to calculate plastic deformation. The computed stress-strain relationship is formulated in two parts, namely a rate-independent part and a rate-dependent part. The rate-independent part is the same as that used in classical elastoplastic formulations, whereas the rate-dependent part is dependent on the current strain rate of the material. The use of the model is illustrated using a numerical example simulating a two-dimensional plane strain test.Key words: constitutive relationship, finite element, plasticity theory, pre-sheared clay, rate effects, residual strength.


Sign in / Sign up

Export Citation Format

Share Document