giant nucleus
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Chung Taing ◽  
Katherine L. Ackerman ◽  
Alison D. Nugent ◽  
Jorgen B. Jensen

AbstractSea salt aerosol(s) (SSA) play a significant role in the atmosphere through aerosol direct and indirect effects, and in atmospheric chemistry as a source of tropospheric bromine. In-situ measurements of coarse-mode SSA particles are limited because of their low concentration and relatively large sizes (dry radius, rd > 0.5 μm). With this in mind, a new, low-cost, easily usable method for sampling coarse-mode SSA particles in the marine boundary layer was developed. A SSA particle sampler that uses an impaction method was designed and built using 3D printing and Arduino microcontrollers and sensors. It exposes polycarbonate slides to ambient airflow remotely on a kite-based platform to capture coarse-mode SSA particles. Because it is a smaller version of the Giant Nucleus Impactor (GNI), designed for use on aircraft, it is named the miniature-Giant Nucleus Impactor, or “mini-GNI”. After sample collection, the same optical microscope methodology utilized by the GNI was used to analyze the wetted salt particles that impacted onto the slides. In this proof-of-concept study, multiple mini-GNIs were attached serially to a kite string, allowing for sampling at multiple altitudes simultaneously. The robustness of the results from this new instrument and methodology for sampling at ambient RH (~ 75 %) the SSA particle size distribution with rd > 3.3 μ m are compared with a similar study. We find that the SSA particle number concentration decreases weakly with altitude and shows no correlation to instantaneous U10 wind speed along the windward coastline of O‘ ahu in the Hawaiian Islands.


2020 ◽  
Vol 37 (9) ◽  
pp. 1551-1569
Author(s):  
Jørgen B. Jensen ◽  
Stuart P. Beaton ◽  
Jeffrey L. Stith ◽  
Karl Schwenz ◽  
Marilé Colón-Robles ◽  
...  

AbstractSize distributions of giant aerosol particles (dry radius larger than 0.5 μm, sometimes referred to as coarse-mode aerosol particles) are not well characterized in the atmosphere. Measurements are problematic for these particles because they (i) occur in low concentrations, (ii) have difficulty in passing through air inlets, (iii) may be dry or deliquesced particles, and (iv) if sampled by impaction, typically require labor-intensive methods. In this study, a simple, high-volume impaction system called the Giant Nucleus Impactor (GNI), based on free-stream exposure of polycarbonate slides from aircraft, is described along with an automated optical microscope–based system for analysis of the impacted particles. The impaction slides are analyzed in a humidity-controlled chamber (typically 90% relative humidity) that ensures deliquescence of soluble (typically sea salt) particles. A computer-controlled optical microscope with two digital cameras is used to acquire and analyze images of the aerosol particles. At relative humidities above deliquescence (74% RH for sea salt), such particles will form near-spherical cap solution drops on the polycarbonate slides. The sea-salt mass in each giant aerosol particle is then calculated using simple geometry and published water activity measurements. The system has a sample volume of about 10 L s−1 at aircraft speeds of 105 m s−1. For salt particles, the measurement range is from about 0.7 μm dry radius to at least 16 μm dry radius, with a size-bin resolution of 0.2 μm dry radius. The sizing accuracy was tested using polystyrene latex (PSL) beads of known size.


Physics ◽  
2018 ◽  
Vol 11 ◽  
Author(s):  
Philip Ball
Keyword(s):  

Nature ◽  
1985 ◽  
Vol 315 (6017) ◽  
pp. 276-276
Author(s):  
Joshua Silver

Sign in / Sign up

Export Citation Format

Share Document