sample volume
Recently Published Documents


TOTAL DOCUMENTS

1132
(FIVE YEARS 345)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Heba Mohamed

Extensive efforts have been made in the last decades to simplify the holistic sample preparation process. The idea of maximizing the extraction efficiency along with the reduction of extraction time, minimization/elimination of hazardous solvents, and miniaturization of the extraction device, eliminating sample pre- and posttreatment steps and reducing the sample volume requirement is always the goal for an analyst as it ensures the method’s congruency with the green analytical chemistry (GAC) principles and steps toward sustainability. In this context, the microextraction techniques such as solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE), microextraction by packed sorbent (MEPS), fabric phase sorptive extraction (FPSE), in-tube extraction dynamic headspace (ITEX-DHS), and PAL SPME Arrow are being very active areas of research. To help transition into wider applications, the new solventless microextraction techniques have to be commercialized, automated, and validated, and their operating principles to be anchored to theory. In this work, the benefits and drawbacks of the advanced microextraction techniques will be discussed and compared, together with their applicability to the analysis of pharmaceuticals in different matrices.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Sheng-Hann Wang ◽  
Chia-Wen Kuo ◽  
Shu-Cheng Lo ◽  
Wing Kiu Yeung ◽  
Ting-Wei Chang ◽  
...  

Abstract Background Gold nanoparticles (AuNPs) have been widely used in local surface plasmon resonance (LSPR) immunoassays for biomolecule sensing, which is primarily based on two conventional methods: absorption spectra analysis and colorimetry. The low figure of merit (FoM) of the LSPR and high-concentration AuNP requirement restrict their limit of detection (LOD), which is approximately ng to μg mL−1 in antibody detection if there is no other signal or analyte amplification. Improvements in sensitivity have been slow in recent for a long time, and pushing the boundary of the current LOD is a great challenge of current LSPR immunoassays in biosensing. Results In this work, we developed spectral image contrast-based flow digital nanoplasmon-metry (Flow DiNM) to push the LOD boundary. Comparing the scattering image brightness of AuNPs in two neighboring wavelength bands near the LSPR peak, the peak shift signal is strongly amplified and quickly detected. Introducing digital analysis, the Flow DiNM provides an ultrahigh signal-to-noise ratio and has a lower sample volume requirement. Compared to the conventional analog LSPR immunoassay, Flow DiNM for anti-BSA detection in pure samples has an LOD as low as 1 pg mL−1 within only a 15-min detection time and 500 μL sample volume. Antibody assays against spike proteins of SARS-CoV-2 in artificial saliva that contained various proteins were also conducted to validate the detection of Flow DiNM in complicated samples. Flow DiNM shows significant discrimination in detection with an LOD of 10 pg mL−1 and a broad dynamic detection range of five orders of magnitude. Conclusion Together with the quick readout time and simple operation, this work clearly demonstrated the high sensitivity and selectivity of the developed Flow DiNM in rapid antibody detection. Spectral image contrast and digital analysis further provide a new generation of LSPR immunoassay with AuNPs. Graphical Abstract


2022 ◽  
Vol 2 ◽  
Author(s):  
Tim Granata ◽  
Bernd Rattenbacher ◽  
Gernot John

Bioreactors in space have applications from basic science to microbial factories. Monitoring bioreactors in microgravity has challenges with respect to fluidics, aeration, sensor size, sample volume and disturbance of medium and cultures. We present a case study of the development of small bioreactors and a non-invasive method to monitor dissolved oxygen, pH, and biomass of yeast cultures. Two different bioreactor configurations were tested for system volumes of 60 ml and 10.5 ml. For both configurations, the PreSens SFR vario, an optical sensor array, collected data autonomously. Oxygen and pH in the cultures were monitored using chemically doped spots, 7 mm in diameter, that were fixed to the bottom of sampling chambers. Spots emitted a fluorescent signal for DO and pH when reacted with oxygen molecules and hydrogen ions, respectively. Biomass was sensed using light reflectance at centered at 605 nm. The, optical array had three light detectors, one for each variable, that returned signals that were pre- and post-calibrated. For heterotrophic cultures requiring oxygen and respiring carbon dioxide, a hollow fiber filter, in-line with the optical array, oxygenated cells and remove carbon dioxide. This provided oxygen levels that were sufficient to maintain aerobic respiration for steady state conditions. Time series of yeast metabolism in the two bioreactors are compared and discussed. The bioreactor configurations can be easily be modified for autotrophic cultures such that carbon dioxide is enhanced and oxygen removed, which would be required for photosynthetic algal cultures.


2021 ◽  
Author(s):  
Tim Stakenborg ◽  
Joren Raymenants ◽  
Ahmed Taher ◽  
Elisabeth Marchal ◽  
Bert Verbruggen ◽  
...  

Abstract The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, a cornerstone for any disease-control strategy, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It potentially measures contagiousness directly, the sample is easy to obtain, its production can be standardized between patients, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an in-situ RT-qPCR molecular assay to detect SARS-CoV-2 shedding. We demonstrate that sampling subjects using a one-minute breathing protocol, yields sufficient viral RNA to detect infections with a sensitivity comparable to standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test is the first to consistently report a negative result, putatively signaling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections. 



2021 ◽  
Vol 1 (2) ◽  
pp. 28-31
Author(s):  
Ronald Winardi Kartika

Background : Native arteriovenous fistula (AVF) is the vascular access of choice for hemodialysis patients. AVF lasts longer than artificial grafts or central venous catheters. In addition, AVF has fewer complications than other vascular accesses. The use of Doppler ultrasound is used to facilitate fistula construction (vascular mapping) including AVF maturation to see if AVF can be used. Doppler ultrasound monitoring for maturation of AV fistulas should be monitored sonographically until the fistula is ready for use, especially when maturation is slow and in patients whose veins cannot easily be assessed by physical examination alone (eg because of obesity). The AVF DUS flow volume measurement may be the only imaging tool that can be used to monitor a fistula even during its maturation. Even so, DUS should always be done before AVF is used for the first time. This examination provides baseline data on vascular access, which can be useful in subsequent tests performed to evaluate functional problems. Case report : A man, 52 years old who has done AV Fitula two weeks ago. Currently patients are using a double lumen catheter (CDL) for routine hemodialysis. One day the patient had his CDL removed. Even though the patient feels thrill in the AV fistula, the nephrorologist still doubts whether the AV fistula is ripe and can be used. For this reason, a Duplex Ultrasound is performed to assess the diameter, velocity flow, PSV and TAMV  .By positioning the sample volume in the presumed stenosis site, the Doppler velocity test detects a systolic peak velocity. Conclusion:  Color flow Doppler imaging should be used as a tool to screen for areas of high velocity and to aid in the optimal placement of the pulsed Doppler sample volume. The pulsed Doppler sample volume should be set at the smallest size possible to detect discrete changes in blood flow meanwhile doppler ultrasound should be use in monitoring for maturation of AV fistulas


2021 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Diana A. Toriz-Gutiérrez ◽  
Humberto Ramírez-Gasca ◽  
Luis E. Cárdenas-Galindo ◽  
Eloisa Gallegos-Arellano

This paper presents a system for the measurement of chlorides in drinking and wastewater, based on an electrochemical process using a selective electrode as a transducer, which was developed by this group. The measurement for the concentration is carried out by introducing the implemented electrode (considered as reference) in the sample that will be analyzed; then a current is passed producing a potential difference in the system. Different aqueous solutions of sodium chloride (NaCl) were used, ranging between 35 and 3546 µg of chloride ions (Cl−). As a data acquisition and monitoring system for the analysis, an ATmega 328P microcontroller was used as the main capture element for subsequent interpretation through graphics. The experimental results show that it was possible to detect a potential difference in the electrochemical measurement system that corresponded to 35 µg of chloride ions (Cl−), making clear the detection process and the selectivity of chloride ions. It is important to mention that with this measurement system and the applied methodology, results are obtained in real time using a small sample volume and without generate ng extra liquid waste, compared to the application of the traditional analytical titrimetric method. Finally, this chloride measurement system is inexpensive and can be used in drinking and wastewater measurements.


Author(s):  
Mustapha Umar Abdullahi

Seven sets of diffusible samples were allowed to diffuse in their medium in order to observe how much meters of distance a given volume of sample will cover in its medium at particular condition. At the same time also to observe how much joules of average kinetic energy that given sample volume possess during the course of its traveling. After successful diffusion by using suitable apparatus, all data associated with this study was carefully observed repeatedly and recorded. In which, mean values were used. Series of findings were found including new equation Xc=   which can be used in determining this new initiative (concentration distance of a diffusible solute in its medium (Xc)).


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiansong Chen ◽  
Yue Hu ◽  
Congxiang Shao ◽  
Haiyun Zhou ◽  
Zhiyue Lv

The application of desorption electrospray ionization mass spectrometry (DESI-MS) and dried blood spot (DBS) sampling has been successfully implemented several times. However, the difficulty of combining DBS sampling with DESI-MS is still the carrier material used for the blood samples. In this study, a new, easily obtained, and cost-effective carrier substrate for dried plasma spot (DPS) sampling and DESI-MS analysis and its application in phospholipidomics studies was described. First, the effects of several carrier materials, including cellulose-based materials (31 ET paper and filter paper) and non-cellulose-based materials (PARAFILM and its shape-modified material, PTFE-printed glass slide and polyvinylidene fluoride film), were tested. Second, a method combining DPS sampling with DESI-MS for phospholipidomics analysis was established, and parameters affecting compound signal intensities, such as sample volume and sprayer solvent system, were optimized. In conclusion, the total signal intensity obtained from shape-modified PARAFILM was the strongest. The suitable plasma sample volume deposited on PARAFILM carriers was 5 μl, and acetonitrile (ACN) was recommended as the optimal spray solvent for phospholipid (PL) profiling. Repeatability (87.5% of compounds with CV < 30%) and stability for data acquisition (48 h) were confirmed. Finally, the developed method was applied in phospholipidomics analysis of schistosomiasis, and a distinguished classification between control mice and infected mice was observed by using multivariate pattern recognition analysis, confirming the practical application of this new carrier material for DPS sampling and DESI-MS analysis. Compared with a previously reported method, the rapid metabolomics screening approach based on the implementation of DPS sampling coupled with the DESI-MS instrument developed in this study has increased analyte sensitivity, which may promote its further application in clinical studies.


2021 ◽  
Author(s):  
Qiang Wang ◽  
Zhen Wang ◽  
Hui Zhang ◽  
Shoulin Jiang ◽  
Yingying Wang ◽  
...  

Abstract Dual-comb spectroscopy (DCS) has revolutionized optical spectroscopy by providing broadband spectral measurements with unprecedent resolution and fast response. Photothermal spectroscopy (PTS) offers an ultrasensitive and background-free gas sensing method, which is normally performed using a single-wavelength pump laser. The merging of PTS with DCS may enable a new spectroscopic method by taking advantage of both technologies, which has never been studied yet. Here, we report dual-comb photothermal spectroscopy (DC-PTS) by passing dual combs and a probe laser through a gas-filled anti-resonant hollow-core fiber, where the generated multi-heterodyne modulation of the refractive index is sensitively detected by an in-line interferometer. As an example, we have measured photothermal spectra of acetylene over 1 THz, showing a good agreement with the spectral database. Our proposed DC-PTS provides new opportunities for broadband gas sensing with super-fine resolution and high sensitivity, as well as with a small sample volume and compact configuration.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 339
Author(s):  
Ashish Mathur ◽  
Hari Chandra Nayak ◽  
Shailendra Rajput ◽  
Souradeep Roy ◽  
Shalini Nagabooshanam ◽  
...  

Diabetes is widely considered as a silent killer which affects the internal organs and ultimately has drastic impacts on our day-to-day activities. One of the fatal outcomes of diabetes is diabetic foot ulcer (DFU); which, when becomes chronic, may lead to amputation. The incorporation of nanotechnology in developing bio-sensors enables the detection of desired biomarkers, which in our study are glucose and L-tyrosine; which gets elevated in patients suffering from diabetes and DFUs, respectively. Herein, we report the development of an enzymatic impedimetric sensor for the multi-detection of these biomarkers using an electrochemical paper-based analytical device (µ-EPADs). The structure consists of two working electrodes and a counter electrode. One working electrode is modified with α-MnO2-GQD/tyrosinase hybrid to aid L-tyrosine detection, while the other electrode is coated with α-MnO2-GQD/glucose oxidase hybrid for glucose monitoring. Electrochemical impedance spectroscopy has been employed for the quantification of glucose and L-tyrosine, within a concentration range of 50–800 mg/dL and 1–500 µmol/L, respectively, using a sample volume of approximately 200 µL. The impedance response exhibited a linear relationship over the analyte concentration range with detection limits of ~58 mg/dL and ~0.3 µmol/L for glucose and tyrosine respectively, with shelf life ~1 month. The sensing strategy was also translated to Arduino-based device applications by interfacing the µ-EPADs with miniaturized electronics.


Sign in / Sign up

Export Citation Format

Share Document