linear assignment problem
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

2020 ◽  
Vol 44 (4) ◽  
pp. 540-546
Author(s):  
E.S. Andreev ◽  
E.V. Byzov ◽  
D.A. Bykov ◽  
М.А. Moiseev ◽  
L.L. Doskolovich

The design of a freeform mirror generating a uniform illuminance distribution in a rectangular region with angular dimensions of 30°x15° is presented. The design method is based on the formulation of the problem of calculating the "ray-mapping" as a Monge-Kantorovich mass transportation problem and its subsequent reducing to a linear assignment problem. We describe a mirror fabrication process with the use of milling technology and present results of experimental measurements of the light distribution generated by the mirror. The experimental results are in good agreement with the results of numerical simulations and thus confirm the manufacturability of mirrors designed by the method proposed.


Author(s):  
Boris Pérez-Cañedo ◽  
Eduardo R. Concepción-Morales

The fuzzy linear assignment problem (FLAP) is an extension of the classical linear assignment problem (LAP) to situations in which uncertainty in the cost coefficients is represented by fuzzy numbers. FLAP applications range from the assignment of workers to tasks to multiple-criteria decision analysis in fuzzy environments and many other engineering applications. Most FLAP formulations assume that all cost coefficients are fuzzy numbers of the same type (e.g. triangular, trapezoidal). The standard solution approach is the defuzzification of the cost coefficients, thus transforming the FLAP into a crisp LAP that can be solved by classical assignment algorithms such as the Hungarian method. It is known that defuzzification methods suffer from lack of discrimination when comparing fuzzy numbers which may lead to suboptimal assignments. The solution approach proposed in this paper is based on the theory of algebraic assignment problems and total orderings in the set of all fuzzy numbers, and it allows to solve FLAPs with different types of fuzzy numbers. More specifically, the FLAP is transformed into a lexicographic linear assignment problem (LLAP) which is solved in its place. We show, both theoretically and numerically, how this transformation overcomes the limitations present in existing approaches.


Author(s):  
Emanuele Olivetti ◽  
Pietro Gori ◽  
Pietro Astolfi ◽  
Giulia Bertó ◽  
Paolo Avesani

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Weifeng Liu ◽  
Jie Zhou ◽  
Meng Guo

This paper presents the topology-aware two-phase I/O (TATP), which optimizes the most popular collective MPI-IO implementation of ROMIO. In order to improve the hop-bytes metric during the file access, topology-aware two-phase I/O employs the Linear Assignment Problem (LAP) for finding an optimal assignment of file domain to aggregators, an aspect which is not considered in most two-phase I/O implementations. The distribution is based on the local data stored by each process, and its main purpose is to reduce the total hop-bytes of the I/O collective operation. Therefore, the global execution time can be improved. In most of the considered scenarios, topology-aware two-phase I/O obtains important improvements when compared with the original two-phase I/O implementations.


2018 ◽  
Vol 26 (21) ◽  
pp. 27812 ◽  
Author(s):  
Dmitry A. Bykov ◽  
Leonid L. Doskolovich ◽  
Albert A. Mingazov ◽  
Evgeni A. Bezus ◽  
Nikolay L. Kazanskiy

Sign in / Sign up

Export Citation Format

Share Document