positive electrode material
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 75)

H-INDEX

53
(FIVE YEARS 7)

Author(s):  
Tatiana I. Perfilyeva ◽  
Oleg A. Drozhzhin ◽  
Anastasia M. Alekseeva ◽  
Maxim V. Zakharkin ◽  
Andrey V. Mironov ◽  
...  

Abstract Here we introduce a new NASICON-type Na3VSc(PO4)3 positive electrode material for Na-ion batteries demonstrating reversible (de)intercalation of 3 Na cations per formula unit within a wide voltage range with complex voltage-composition dependence. The total electrochemical capacity of the material is 170 mAh/g, which corresponds to the complete three-electron V2+/V3+/V4+/V5+ process. All the (de)sodiation stages follow a predominantly solid-solution mechanism, as shown by operando X-ray powder diffraction. The oxidation of vanadium up to +5 upon the charge of Na3VSc(PO4)3 to 4.5 V vs. Na/Na+ causes the significant transformation of the unit cell. According to ex situ Fourier-transformed infrared spectroscopy it is accompanied by the increasing distortion of the vanadium coordination environment and shortening of the vanadium-oxygen bonds. This leads to the irreversible character of the charge-discharge curve, and the initial structure can be restored after the strong overdischarge to ≈1.5 V vs. Na/Na+.


2021 ◽  
Vol 341 ◽  
pp. 117319 ◽  
Author(s):  
Surendra K. Shinde ◽  
Swapnil S. Karade ◽  
Hemraj.M. Yadav ◽  
Nagesh C. Maile ◽  
Gajanan.S. Ghodake ◽  
...  

2021 ◽  
Author(s):  
Sunkyu Park ◽  
Ziliang Wang ◽  
Zeyu Deng ◽  
Iona Moog ◽  
Pieremanuele Canepa ◽  
...  

The Na-superionic-conductor (NASICON) Na3V2(PO4)3 is an important positive electrode material for Na-ion batteries. Here, we investigate the mechanisms of phase transition in NaxV2(PO4)3 (1 ≤ x ≤ 4) upon a non-equilibrium battery cycling. Unlike the widely believed two-phase reaction in Na3V2(PO4)3 – Na1V2(PO4)3 system, we determine a new intermediate Na2V2(PO4)3 phase using operando synchrotron X-ray diffraction. Density functional theory calculations further support the existence of the Na2V2(PO4)3 phase. We propose for the first time two possible crystal structures of Na2V2(PO4)3 analyzed by Rietveld refinement. The two structure models with the space groups P21/c or P2/c for the new intermediate Na2V2(PO4)3 phase show similar unit cell parameters but different atomic arrangements, including a vanadium charge ordering. As the appearance of the intermediate Na2V2(PO4)3 phase is accompanied by symmetry reduction, Na(1) and Na(2) sites split into several positions in Na2V2(PO4)3, in which one of the splitting Na(2) position is found to be a vacancy whereas the Na(1) positions are almost fully filled. The intermediate Na2V2(PO4)3 phase reduces the lattice mismatch between Na3V2(PO4)3 and Na1V2(PO4)3 phases facilitating a fast phase transition. This work paves the way for a better understanding of great rate capabilities of Na3V2(PO4)3.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Shivraj Mahadik ◽  
Nilesh R. Chodankar ◽  
Young-Kyu Han ◽  
Deepak Dubal ◽  
Sarita Patil

Sign in / Sign up

Export Citation Format

Share Document