al2o3 composite
Recently Published Documents


TOTAL DOCUMENTS

897
(FIVE YEARS 220)

H-INDEX

50
(FIVE YEARS 9)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 407
Author(s):  
Katarzyna Konopka ◽  
Justyna Zygmuntowicz ◽  
Marek Krasnowski ◽  
Konrad Cymerman ◽  
Marcin Wachowski ◽  
...  

NiAl-Al2O3 composites, fabricated from the prepared composite powders by mechanical alloying and then consolidated by pulse plasma sintering, were presented. The use of nanometric alumina powder for reinforcement of a synthetized intermetallic matrix was the innovative concept of this work. Moreover, this is the first reported attempt to use the Pulse Plasma Sintering (PPS) method to consolidate composite powder with the contribution of nanometric alumina powder. The composite powders consisting of the intermetallic phase NiAl and Al2O3 were prepared by mechanical alloying from powder mixtures containing Ni-50at.%Al with the contribution of 10 wt.% or 20 wt.% nanometric aluminum oxide. A nanocrystalline NiAl matrix was formed, with uniformly distributed Al2O3 inclusions as reinforcement. The PPS method successfully consolidated NiAl-Al2O3 composite powders with limited grain growth in the NiAl matrix. The appropriate sintering temperature for composite powder was selected based on analysis of the grain growth and hardness of Al2O3 subjected to PPS consolidation at various temperatures. As a result of these tests, sintering of the NiAl-Al2O3 powders was carried out at temperatures of 1200 °C, 1300 °C, and 1400 °C. The microstructure and properties of the initial powders, composite powders, and consolidated bulk composite materials were characterized by SEM, EDS, XRD, density, and hardness measurements. The hardness of the ultrafine-grained NiAl-Al2O3 composites obtained via PPS depends on the Al2O3 content in the composite, as well as the sintering temperature applied. The highest values of the hardness of the composites were obtained after sintering at the lowest temperature (1200 °C), reaching 7.2 ± 0.29 GPa and 8.4 ± 0.07 GPa for 10 wt.% Al2O3 and 20 wt.% Al2O3, respectively, and exceeding the hardness values reported in the literature. From a technological point of view, the possibility to use sintering temperatures as low as 1200 °C is crucial for the production of fully dense, ultrafine-grained composites with high hardness.


2022 ◽  
pp. 121-145
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh
Keyword(s):  

2021 ◽  
Author(s):  
Yuzhe Chen ◽  
Hongwei Chen ◽  
Libin Gao ◽  
Kexin Liang ◽  
Zhiqiang Wang ◽  
...  

Abstract The effect of (1-x)(Pb0.97La0.02)(Zr0.675Sn0.285Ti0.04)O3-xAl2O3, with x=0~0.04, 0.08, 0.10 composite ceramic samples was studied. In this experiment, the PLZST powder was pre-fired to obtain the perovskite structure, and then combined with α-Al2O3 to increase the BDS of the ceramic. The test results show that the composite thick film samples are all perovskite orthorhombic phases, and Al2O3 is mainly filled in the grain gaps with a flaky structure. A proper content of composite Al2O3 can increase the density of ceramics. With x=0.02, the maximum value of BDS is 25.27 kV/mm, which is 60% higher than pure PLZST material, and the releasable energy storage density also reaches a maximum of 2.95 J/cm³. After the composite amount exceeds 0.03, the saturation polarization intensity decreases significantly. The energy storage efficiency of each sample is generally not high, all of which are less than 65%.


2021 ◽  
Vol 54 ◽  
pp. 101756
Author(s):  
Qiuyun Pu ◽  
Yi Wang ◽  
Xiaocheng Wang ◽  
Zhitao Shao ◽  
Shikun Wen ◽  
...  
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1412
Author(s):  
Oana Grad ◽  
Gabriela Blanita ◽  
Mihaela D. Lazar ◽  
Maria Mihet

MIL-53 and the MIL-53–Al2O3 composite synthesized by a solvothermal procedure, with water as the only solvent besides CrCl3 and benzene-1,4-dicarboxylic acid (BDC), were used as catalytic supports to obtain the novel MIL-53-based catalysts Ni(10 wt.%)/MIL-53 and Ni(10 wt.%)/MIL-53–Al2O3. Ni nanoparticle deposition by an adapted double-solvent method leads to the uniform distribution of metallic particles, both smaller (≤10 nm) and larger ones (10–30 nm). MIL-53–Al2O3 and Ni/MIL-53–Al2O3 show superior thermal stability to MIL-53 and Ni/MIL-53, while MIL-53–Al2O3 samples combine the features of both MIL-53 and alumina in terms of porosity. The investigation of temperature’s effect on the catalytic performance in the methanation process (CO2:H2 = 1:5.2, GHSV = 4650 h−1) revealed that Ni/MIL-53 is more active at temperatures below 300 °C, and Ni/MIL-53–Al2O3 above 300 °C. Both catalysts show maximum CO2 conversion at 350 °C: 75.5% for Ni/MIL-53 (methane selectivity of 93%) and 88.8% for Ni/MIL-53–Al2O3 (methane selectivity of 98%). Stability tests performed at 280 °C prove that Ni/MIL-53–Al2O3 is a possible candidate for the CO2 methanation process due to its high CO2 conversion and CH4 selectivity, corroborated by the preservation of the structure and crystallinity of MIL-53 after prolonged exposure in the reaction medium.


Sign in / Sign up

Export Citation Format

Share Document