composite coatings
Recently Published Documents


TOTAL DOCUMENTS

4798
(FIVE YEARS 1438)

H-INDEX

89
(FIVE YEARS 19)

2022 ◽  
Vol 319 ◽  
pp. 126080
Author(s):  
Majid Shaker ◽  
Erfan Salahinejad ◽  
Weiqi Cao ◽  
Xiaomin Meng ◽  
Vahdat Zahedi Asl ◽  
...  

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Yaling Da ◽  
Jianxing Liu ◽  
Zixian Gao ◽  
Xiangxin Xue

In this work, a series of epoxy acrylate (EA)/mica composite coatings were synthesized through introducing mica powders of different particle size into epoxy acrylate coatings and using an ultraviolet (UV) curing technique to investigate the influence of mica particle size on the coatings. Mica powders of different particle sizes were obtained by ball-milling for 4, 8, 12, 16, and 20 h with a planetary high-energy ball mill. The particle size and morphologies of ball-milled mica powders were characterized by laser particle size analyzer and scanning electron microscopy (SEM). The results indicated that planetary ball-milling reduced the particle size of mica powders effectively. Mica powders that were un-ball-milled and ball-milled were added into the epoxy acrylate matrix by a blending method to synthesize the organic-inorganic UV curable coatings. The optical photographs of the coatings showed greater stability of liquid mixtures with smaller particle size fillers. The chemical structures of EA/mica composite coatings were investigated by Fourier transform infrared spectroscopy (FTIR), and the conversion rate of C=C bonds was calculated. The results indicated that the C=C conversion of coatings with mica powders of smaller particle sizes was higher. Tests of mechanical properties and tests using electrochemical impedance spectroscopy (EIS) showed that pencil hardness, impact resistance, and coating resistance were improved due to the reduction of mica powders particle size.


Author(s):  
Nenad Radić ◽  
Boško Grbić ◽  
Stevan Stojadinović ◽  
Mila Ilić ◽  
Ognjen Došen ◽  
...  

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Pouya Shojaei ◽  
Riccardo Scazzosi ◽  
Mohamed Trabia ◽  
Brendan O’Toole ◽  
Marco Giglio ◽  
...  

While deposited thin film coatings can help enhance surface characteristics such as hardness and friction, their effective incorporation in product design is restricted by the limited understanding of their mechanical behavior. To address this, an approach combining micro-indentation and meso/micro-scale simulations was proposed. In this approach, micro-indentation testing was conducted on both the coating and the substrate. A meso-scale uniaxial compression finite element model was developed to obtain a material model of the coating. This material model was incorporated within an axisymmetric micro-scale model of the coating to simulate the indentation. The proposed approach was applied to a Ti/SiC metal matrix nanocomposite (MMNC) coating, with a 5% weight of SiC nanoparticles deposited over a Ti-6Al-4V substrate using selective laser melting (SLM). Micro-indentation testing was conducted on both the Ti/SiC MMNC coating and the Ti-6Al-4V substrate. The results of the meso-scale finite element indicated that the MMNC coating can be represented using a bi-linear elastic-plastic material model, which was incorporated within an axisymmetric micro-scale model. Comparison of the experimental and micro-scale model results indicated that the proposed approach was effective in capturing the post-indentation behavior of the Ti/SiC MMNC coating. This methodology can also be used for studying the response of composite coatings with different percentages of reinforcements.


2022 ◽  
Vol 8 ◽  
Author(s):  
Memoona Akhtar ◽  
Syed Ahmed Uzair ◽  
Muhammad Rizwan ◽  
Muhammad Atiq Ur Rehman

Bioceramic coatings on metallic implants provide a wear-resistant and biocompatible layer, that own ability to develop bone-like apatite in physiological environments to ensure bonding with hard tissues. These bioceramics primarily belong to Calcium Phosphates (CaPs), bioactive glasses, and glass-ceramics. Several techniques are used to deposit these coatings such as; electrophoretic deposition (EPD), plasma spray (PS), and Radio frequency magnetron sputtering (RFMS). Most of these techniques require a high-temperature operation or sintering treatment. This causes either thermal decomposition of bioceramic or results in delamination and cracking of the bioceramic coating due to differences in thermal expansion behavior of metals and bioceramics. RFMS is primarily carried out either at room temperature. However, annealing is performed or substrate is heated at various temperatures ∼400–1,200°C for 2 or 4 h under dry argon (very low temperature compared to other techniques) to ensure crystallization of bioceramics and improve coating adhesion. Chemical composition stability and excellent surface finish are the premium features of RFMS, due to less heat involvement. Moreover, RFMS has the unique ability to develop one-unit/ multilayered composite coatings and the flexibility of in-situ reactions to yield oxides and nitrides. Single or multiple targets can be employed with the insertion of Oxygen and Nitrogen to yield versatile coatings. Due to this attractive set of features RFMS has a strong potential in the field of bioceramic coatings. In recent years, several multifunctional bioceramic coatings have been deposited on metallic substrates using RFMS for biomedical applications. This review focuses on the recent efforts made in order to deposit multifunctional bioceramic RFMS coatings with surface characteristics necessary for biomedical applications and highlights future directions for the improved biological performance of RFMS bioceramic coatings.


2022 ◽  
Vol 1049 ◽  
pp. 144-151
Author(s):  
Oksana Timokhova ◽  
Dmitry Shakirzyanov ◽  
Roman Timokhov

Coatings obtained by spraying materials with a high-temperature gas jet onto a substrate followed by thermal treatment of the deposited materials (thermal gas coatings) are increasingly being used. The practical experience of using thermal spray coatings, accumulated over the past 20–30 years in industries, shows that in this way it is possible, as a rule, to reduce the wear of machine parts operating under various conditions by a factor of 2–5. The effectiveness of the technology has also been proven in the protection of products from corrosion and thermal damage. The efficiency of the applied materials is determined by their structure, which largely depends on the choice of the composition of the material, the method, and modes of application. A comprehensive solution to these issues with the study of the mechanism of the processes of formation of thermal gas coatings will create a scientific basis for the technology for its successful implementation in production. At the same time, the importance of studying the processes and optimizing the technological parameters of spraying and subsequent coating treatment increases. Optimization is carried out, as a rule, according to the results of experiments. Let us consider the study on the example of the development of wear-resistant composite coatings with solid lubricant inclusions with the substantiation of the technique and criteria for optimizing technological parameters taking into account the most important properties of sprayed protective coatings.


2022 ◽  
Author(s):  
Mohamed Thariq Hameed Sultan ◽  
S. Arulvel ◽  
K. Jayakrishna
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document