tangent manifold
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2019 ◽  
Vol 16 (supp02) ◽  
pp. 1941006
Author(s):  
Layth M. Alabdulsada ◽  
László Kozma

A sub-Finslerian manifold is, roughly speaking, a manifold endowed with a Finsler type metric which is defined on a [Formula: see text]-dimensional smooth distribution only, not on the whole tangent manifold. Our purpose is to construct a generalized nonlinear connection for a sub-Finslerian manifold, called [Formula: see text]-connection by the Legendre transformation which characterizes normal extremals of a sub-Finsler structure as geodesics of this connection. We also wish to investigate some of its properties like normal, adapted, partial and metrical.


Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 1985-1994
Author(s):  
Cristian Ida ◽  
Paul Popescu

The present paper unifies some aspects concerning the vertical Liouville distributions on the tangent (cotangent) bundle of a Finsler (Cartan) space in the context of generalized geometry. More exactly, we consider the big-tangent manifold TM associated to a Finsler space (M,F) and of its L-dual which is a Cartan space (M,K) and we define three Liouville distributions on TM which are integrable. We also find geometric properties of both leaves of Liouville distribution and the vertical distribution in our context.


2016 ◽  
Vol 10 (6) ◽  
pp. 2035-2043
Author(s):  
Adelina Manea ◽  
Cristian Ida
Keyword(s):  

Author(s):  
Francisco Javier Funes ◽  
Javier García de Jalón

This paper presents a method for solving the dynamic equations of multibody systems containing both rigid and flexible bodies. The proposed method uses independent coordinates and projects the dynamic equations on the constraint tangent manifold by means of a velocity transformation matrix. It can be used with a wide variety of integration formulae, considering both fixed and variable stepsizes. Topological semirecursive methods are used to take advantage of the relatively small number of parameters needed. An in depth implementation analysis is performed in order to evaluate the terms involved in the integration process. Numerical and stability issues are also discussed.


Author(s):  
Izu Vaisman

Abstract We define a class of metrics that extend the Sasaki metric of the tangent manifold of a Riemannian manifold. The new metrics are obtained by the transfer of the generalized (pseudo-)Riemannian metrics of the pullback bundle π−1(TM⊕T*M), where π : T M → M is the natural projection. We obtain the expression of the transferred metric and define a canonical metric connection with torsion. We calculate the torsion, curvature and Ricci curvature of this connection and give a few applications of the results. We also discuss the transfer of generalized complex and generalized Kähler structures from the pullback bundle to the tangent manifold.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Pinaki Patra ◽  
Md. Raju ◽  
Gargi Manna ◽  
Jyoti Prasad Saha

The Ostrogradski approach for the Hamiltonian formalism of higher derivative theory is not satisfactory because the Lagrangian cannot be viewed as a function on the tangent bundle to coordinate manifold. In this paper, we have used an alternative approach which leads directly to the Lagrangian which, being a function on the tangent manifold, gives correct equation of motion; no new coordinate variables need to be added. This approach can be used directly to the singular (in Ostrogradski sense) Lagrangian. We have used this method for the Regge-Teitelboim (RT) minisuperspace cosmological model. We have obtained the Hamiltonian of the dynamical equation of the scale factor of RT model.


2013 ◽  
Vol 10 (09) ◽  
pp. 1350044
Author(s):  
M. RAFIE-RAD

The Riemann curvature in Riemann–Finsler geometry can be regarded as a collection of linear operators on the tangent spaces. The algebraic properties of these operators may be linked to the geometry and the topology of the underlying space. The principal curvatures of a Finsler space (M, F) at a point x are the eigenvalues of the Riemann curvature operator at x. They are real functions κ on the slit tangent manifold TM0. A principal curvature κ(x, y) is said to be isotropic (respectively, quadratic) if κ(x, y)/F(x, y) is a function of x only (respectively, κ(x, y) is quadratic with respect to y). On the other hand, the Randers metrics are the most popular and prominent metrics in pure and applied disciplines. Here, it is proved that if a Randers metric admits an isotropic principal curvature, then F is of isotropic S-curvature. The same result is also established for F to admit a quadratic principal curvature. These results extend Shen's verbal results about Randers metrics of scalar flag curvature K = K(x) as well as those Randers metrics with quadratic Riemann curvature operator. The Riemann curvature [Formula: see text] may be broken into two operators [Formula: see text] and [Formula: see text]. The isotropic and quadratic principal curvature are characterized in terms of the eigenvalues of [Formula: see text] and [Formula: see text].


2003 ◽  
Vol 18 (39) ◽  
pp. 2795-2806 ◽  
Author(s):  
R. P. MALIK

We discuss the dynamics of a particular two-dimensional (2D) physical system in the four-dimensional (4D) (non-)commutative phase space by exploiting the consistent Hamiltonian and Lagrangian formalisms based on the symplectic structures defined on the 4D (non-)commutative cotangent manifolds. The noncommutativity exists equivalently in the coordinate or the momentum planes embedded in the 4D cotangent manifolds. The signature of this noncommutativity is reflected in the derivation of the first-order Lagrangians where we exploit the most general form of the Legendre transformation defined on the (non-)commutative (co-)tangent manifolds. The second-order Lagrangian, defined on the 4D tangent manifold, turns out to be the same irrespective of the noncommutativity present in the 4D cotangent manifolds for the discussion of the Hamiltonian formulation. A connection with the noncommutativity of the dynamics, associated with the quantum groups on the q-deformed 4D cotangent manifolds, is also pointed out.


Sign in / Sign up

Export Citation Format

Share Document