labeled trees
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
David Fernández-Baca ◽  
Lei Liu

Abstract Background A semi-labeled tree is a tree where all leaves as well as, possibly, some internal nodes are labeled with taxa. Semi-labeled trees encompass ordinary phylogenetic trees and taxonomies. Suppose we are given a collection $${\mathcal {P}}= \{{\mathcal {T}}_1, {\mathcal {T}}_2, \ldots , {\mathcal {T}}_k\}$$ P = { T 1 , T 2 , … , T k } of semi-labeled trees, called input trees, over partially overlapping sets of taxa. The agreement problem asks whether there exists a tree $${\mathcal {T}}$$ T , called an agreement tree, whose taxon set is the union of the taxon sets of the input trees such that the restriction of $${\mathcal {T}}$$ T to the taxon set of $${\mathcal {T}}_i$$ T i is isomorphic to $${\mathcal {T}}_i$$ T i , for each $$i \in \{1, 2, \ldots , k\}$$ i ∈ { 1 , 2 , … , k } . The agreement problems is a special case of the supertree problem, the problem of synthesizing a collection of phylogenetic trees with partially overlapping taxon sets into a single supertree that represents the information in the input trees. An obstacle to building large phylogenetic supertrees is the limited amount of taxonomic overlap among the phylogenetic studies from which the input trees are obtained. Incorporating taxonomies into supertree analyses can alleviate this issue. Results We give a $${\mathcal {O}}(n k (\sum _{i \in [k]} d_i + \log ^2(nk)))$$ O ( n k ( ∑ i ∈ [ k ] d i + log 2 ( n k ) ) ) algorithm for the agreement problem, where n is the total number of distinct taxa in $${\mathcal {P}}$$ P , k is the number of trees in $${\mathcal {P}}$$ P , and $$d_i$$ d i is the maximum number of children of a node in $${\mathcal {T}}_i$$ T i . Conclusion Our algorithm can aid in integrating taxonomies into supertree analyses. Our computational experience with the algorithm suggests that its performance in practice is much better than its worst-case bound indicates.


Author(s):  
Diego Arcis ◽  
Sebastián Márquez

We endow the space of rooted planar trees with the structure of a Hopf algebra. We prove that variations of such a structure lead to Hopf algebras on the spaces of labeled trees, [Formula: see text]-trees, increasing planar trees and sorted trees. These structures are used to construct Hopf algebras on different types of permutations. In particular, we obtain new characterizations of the Hopf algebras of Malvenuto–Reutenauer and Loday–Ronco via planar rooted trees.


2021 ◽  
Vol 4 ◽  
pp. 653-683
Author(s):  
Louigi Addario-Berry ◽  
Marie Albenque
Keyword(s):  

2021 ◽  
Vol vol. 23 no. 1 (Graph Theory) ◽  
Author(s):  
Marc Hellmuth ◽  
Carsten R. Seemann ◽  
Peter F. Stadler

Binary relations derived from labeled rooted trees play an import role in mathematical biology as formal models of evolutionary relationships. The (symmetrized) Fitch relation formalizes xenology as the pairs of genes separated by at least one horizontal transfer event. As a natural generalization, we consider symmetrized Fitch maps, that is, symmetric maps $\varepsilon$ that assign a subset of colors to each pair of vertices in $X$ and that can be explained by a tree $T$ with edges that are labeled with subsets of colors in the sense that the color $m$ appears in $\varepsilon(x,y)$ if and only if $m$ appears in a label along the unique path between $x$ and $y$ in $T$. We first give an alternative characterization of the monochromatic case and then give a characterization of symmetrized Fitch maps in terms of compatibility of a certain set of quartets. We show that recognition of symmetrized Fitch maps is NP-complete. In the restricted case where $|\varepsilon(x,y)|\leq 1$ the problem becomes polynomial, since such maps coincide with class of monochromatic Fitch maps whose graph-representations form precisely the class of complete multi-partite graphs.


2021 ◽  
Author(s):  
David Fernández-Baca ◽  
Lei Liu

Abstract Background: A semi-labeled tree is a tree where all leaves as well as, possibly, some internal nodes are labeledwith taxa. Semi-labeled trees encompass ordinary phylogenetic trees and taxonomies. Suppose we are given a collection P = {T1, T2, . . . , Tk} of semi-labeled trees, called input trees, over partially overlapping sets of taxa. The agreement problem asks whether there exists a tree T , called an agreement tree, whose taxon set is the union of the taxon sets of the input trees such that the restriction of T to the taxon set of Ti is isomorphic to i, for each i ε 1, 2, . . . , k . The agreement problems is a special case of the supertree problem, the problem of synthesizing a collection of phylogenetic trees with partially overlapping taxon sets into a single supertree that represents the information in the input trees. An obstacle to building large phylogenetic supertrees is the limited amount of taxonomic overlap among the phylogenetic studies from which the input trees are obtained. Incorporating taxonomies into supertree analyses can alleviate this issue. Results: We give a O(nk(i∈[k]di + log2(nk))) algorithm for the agreement problem, where n is the total number of distinct taxa in P, k is the number of trees in P, and di is the maximum number of children of a node in Ti. Our computational experience with the algorithm suggests that its performance in practice is much better than its worst-case bound indicates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noslen Hernández ◽  
Aline Duarte ◽  
Guilherme Ost ◽  
Ricardo Fraiman ◽  
Antonio Galves ◽  
...  

AbstractUsing a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are characterized by rooted and labeled trees whose leaves, henceforth called contexts, represent the sequences of past stimuli governing the choice of the next stimulus. A classical conjecture claims that the brain assigns probabilistic models to samples of stimuli. If this is true, then the context tree generating the sequence of stimuli should be encoded in the brain activity. Using an innovative statistical procedure we show that this context tree can effectively be extracted from the EEG data, thus giving support to the classical conjecture.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S10) ◽  
Author(s):  
Samuel Briand ◽  
Christophe Dessimoz ◽  
Nadia El-Mabrouk ◽  
Manuel Lafond ◽  
Gabriela Lobinska

Abstract Background The Robinson-Foulds (RF) distance is a well-established measure between phylogenetic trees. Despite a lack of biological justification, it has the advantages of being a proper metric and being computable in linear time. For phylogenetic applications involving genes, however, a crucial aspect of the trees ignored by the RF metric is the type of the branching event (e.g. speciation, duplication, transfer, etc). Results We extend RF to trees with labeled internal nodes by including a node flip operation, alongside edge contractions and extensions. We explore properties of this extended RF distance in the case of a binary labeling. In particular, we show that contrary to the unlabeled case, an optimal edit path may require contracting “good” edges, i.e. edges shared between the two trees. Conclusions We provide a 2-approximation algorithm which is shown to perform well empirically. Looking ahead, computing distances between labeled trees opens up a variety of new algorithmic directions.Implementation and simulations available at https://github.com/DessimozLab/pylabeledrf.


2020 ◽  
Vol 283 ◽  
pp. 495-511
Author(s):  
Marc Hellmuth ◽  
Carsten R. Seemann ◽  
Peter F. Stadler

Sign in / Sign up

Export Citation Format

Share Document