bayesian adaptive design
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stephan Ursprung ◽  
Helen Mossop ◽  
Ferdia A. Gallagher ◽  
Evis Sala ◽  
Richard Skells ◽  
...  

Abstract Background Window-of-opportunity trials, evaluating the engagement of drugs with their biological target in the time period between diagnosis and standard-of-care treatment, can help prioritise promising new systemic treatments for later-phase clinical trials. Renal cell carcinoma (RCC), the 7th commonest solid cancer in the UK, exhibits targets for multiple new systemic anti-cancer agents including DNA damage response inhibitors, agents targeting vascular pathways and immune checkpoint inhibitors. Here we present the trial protocol for the WIndow-of-opportunity clinical trial platform for evaluation of novel treatment strategies in REnal cell cancer (WIRE). Methods WIRE is a Phase II, multi-arm, multi-centre, non-randomised, proof-of-mechanism (single and combination investigational medicinal product [IMP]), platform trial using a Bayesian adaptive design. The Bayesian adaptive design leverages outcome information from initial participants during pre-specified interim analyses to determine and minimise the number of participants required to demonstrate efficacy or futility. Patients with biopsy-proven, surgically resectable, cT1b+, cN0–1, cM0–1 clear cell RCC and no contraindications to the IMPs are eligible to participate. Participants undergo diagnostic staging CT and renal mass biopsy followed by treatment in one of the treatment arms for at least 14 days. Initially, the trial includes five treatment arms with cediranib, cediranib + olaparib, olaparib, durvalumab and durvalumab + olaparib. Participants undergo a multiparametric MRI before and after treatment. Vascularised and de-vascularised tissue is collected at surgery. A ≥ 30% increase in CD8+ T-cells on immunohistochemistry between the screening and nephrectomy is the primary endpoint for durvalumab-containing arms. Meanwhile, a reduction in tumour vascular permeability measured by Ktrans on dynamic contrast-enhanced MRI by ≥30% is the primary endpoint for other arms. Secondary outcomes include adverse events and tumour size change. Exploratory outcomes include biomarkers of drug mechanism and treatment effects in blood, urine, tissue and imaging. Discussion WIRE is the first trial using a window-of-opportunity design to demonstrate pharmacological activity of novel single and combination treatments in RCC in the pre-surgical space. It will provide rationale for prioritising promising treatments for later phase trials and support the development of new biomarkers of treatment effect with its extensive translational agenda. Trial registration ClinicalTrials.gov: NCT03741426 / EudraCT: 2018–003056-21.


2021 ◽  
Author(s):  
Stephen L. Lake ◽  
Melanie A. Quintana ◽  
Kristine Broglio ◽  
Jennifer Panagoulias ◽  
Scott M. Berry ◽  
...  

2021 ◽  
Vol 27 (1) ◽  
pp. 186
Author(s):  
Abhijit Nair ◽  
Praneeth Suvvari ◽  
SrinivasShyam Prasad Mantha ◽  
BasanthKumar Rayani

Stats ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 221-238
Author(s):  
Márcio A. Diniz ◽  
Sungjin Kim ◽  
Mourad Tighiouart

We propose a Bayesian adaptive design for early phase drug combination cancer trials incorporating ordinal grade of toxicities. Parametric models are used to describe the relationship between the dose combinations and the probabilities of the ordinal toxicities under the proportional odds assumption. Trial design proceeds by treating cohorts of two patients simultaneously receiving different dose combinations. Specifically, at each stage of the trial, we seek the dose of one agent by minimizing the Bayes risk with respect to a loss function given the current dose of the other agent. We consider two types of loss functions corresponding to the Continual Reassessment Method (CRM) and Escalation with Overdose Control (EWOC). At the end of the trial, we estimate the MTD curve as a function of Bayes estimates of the model parameters. We evaluate design operating characteristics in terms of safety of the trial and percent of dose recommendation at dose combination neighborhoods around the true MTD by comparing this design to the one that uses a binary indicator of DLT. The methodology is further adapted to the case of a pre-specified discrete set of dose combinations.


2020 ◽  
Vol 30 (5) ◽  
pp. 1183-1208 ◽  
Author(s):  
S. G. J. Senarathne ◽  
C. C. Drovandi ◽  
J. M. McGree

2020 ◽  
Vol 22 (10) ◽  
pp. 1505-1515 ◽  
Author(s):  
Vinay K Puduvalli ◽  
Jing Wu ◽  
Ying Yuan ◽  
Terri S Armstrong ◽  
Elizabeth Vera ◽  
...  

Abstract Background Bevacizumab has promising activity against recurrent glioblastoma (GBM). However, acquired resistance to this agent results in tumor recurrence. We hypothesized that vorinostat, a histone deacetylase (HDAC) inhibitor with anti-angiogenic effects, would prevent acquired resistance to bevacizumab. Methods This multicenter phase II trial used a Bayesian adaptive design to randomize patients with recurrent GBM to bevacizumab alone or bevacizumab plus vorinostat with the primary endpoint of progression-free survival (PFS) and secondary endpoints of overall survival (OS) and clinical outcomes assessment (MD Anderson Symptom Inventory Brain Tumor module [MDASI-BT]). Eligible patients were adults (≥18 y) with histologically confirmed GBM recurrent after prior radiation therapy, with adequate organ function, KPS ≥60, and no prior bevacizumab or HDAC inhibitors. Results Ninety patients (bevacizumab + vorinostat: 49, bevacizumab: 41) were enrolled, of whom 74 were evaluable for PFS (bevacizumab + vorinostat: 44, bevacizumab: 30). Median PFS (3.7 vs 3.9 mo, P = 0.94, hazard ratio [HR] 0.63 [95% CI: 0.38, 1.06, P = 0.08]), median OS (7.8 vs 9.3 mo, P = 0.64, HR 0.93 [95% CI: 0.5, 1.6, P = 0.79]) and clinical benefit were similar between the 2 arms. Toxicity (grade ≥3) in 85 evaluable patients included hypertension (n = 37), neurological changes (n = 2), anorexia (n = 2), infections (n = 9), wound dehiscence (n = 2), deep vein thrombosis/pulmonary embolism (n = 2), and colonic perforation (n = 1). Conclusions Bevacizumab combined with vorinostat did not yield improvement in PFS or OS or clinical benefit compared with bevacizumab alone or a clinical benefit in adults with recurrent GBM. This trial is the first to test a Bayesian adaptive design with adaptive randomization and Bayesian continuous monitoring in patients with primary brain tumor and demonstrates the feasibility of using complex Bayesian adaptive design in a multicenter setting.


Sign in / Sign up

Export Citation Format

Share Document