operational testing
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 43)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
pp. 415-429
Author(s):  
Benjamin Kremmel ◽  
Kathrin Eberharter ◽  
Franz Holzknecht
Keyword(s):  

2021 ◽  
Author(s):  
Angela Rolufs ◽  
Amelia Trout ◽  
Kevin Palmer ◽  
Clark Boriack ◽  
Bryan Brilhart ◽  
...  

The objective of the Autonomous Transport Innovation (ATI) technical research program is to investigate current gaps and challenges then develop solutions to integrate emerging electric transport vehicles, vehicle autonomy, vehicle-to-grid (V2G) charging and microgrid technologies with military legacy equipment. The ATI research area objectives are to: identify unique military requirements for autonomous transportation technologies; identify currently available technologies that can be adopted for military applications and validate the suitability of these technologies to close need gaps; identify research and operational tests for autonomous transport vehicles; investigate requirements for testing and demonstrating of bidirectional vehicle charging within a tactical environment; develop requirements for a sensored, living laboratory that will be used to assess the performance of autonomous innovations; and integrate open standards to promote interoperability and broad-platform compatibility. The research performed resulted in an approach to develop a sensored, living laboratory with operational testing capability to assess the safety, utility, interoperability, and resiliency of autonomous electric transport and V2G technologies in a tactical microgrid. The living laboratory will support research and assessment of emerging technologies and determine the prospect for implementation in defense transport operations and contingency base energy resilience.


2021 ◽  
Author(s):  
Angela Rolufs ◽  
Amelia Trout ◽  
Kevin Palmer ◽  
Clark Boriack ◽  
Bryan Brilhart ◽  
...  

The objective of the Autonomous Transport Innovation (ATI) technical research program is to investigate current gaps and challenges and develop solutions to integrate emerging electric transport vehicles, vehicle autonomy, vehicle-to-grid (V2G) charging and microgrid technologies with military legacy equipment. The ATI research area objectives are to: identify unique military requirements for autonomous transportation technologies; identify currently available technologies that can be adopted for military applications and validate the suitability of these technologies to close need gaps; identify research and operational tests for autonomous transport vehicles; investigate requirements for testing and demonstrating of bidirectional-vehicle charging within a tactical environment; develop requirements for a sensored, living laboratory that will be used to assess the performance of autonomous innovations; and integrate open standards to promote interoperability and broad-platform compatibility. This final report summarizes the team’s research, which resulted in an approach to develop a sensored, living laboratory with operational testing capability to assess the safety, utility, interoperability, and resiliency of autonomous electric transport and V2G technologies in a tactical microgrid. The living laboratory will support research and assessment of emerging technologies and determine the prospect for implementation in defense transport operations and contingency base energy resilience.


2021 ◽  
Vol 263 (5) ◽  
pp. 1152-1163
Author(s):  
Bieke von den Hoff ◽  
Mirjam Snellen ◽  
Dick G. Simons

In sustainable aviation the focus is mostly applied to the greenhouse gas emissions during flight. However airports have an increasing interest in reducing emissions during ground operations such as taxiing for example to improve the local air quality. Amsterdam Airport Schiphol started a pilot for sustainable taxiing with a pilot-controlled hybrid-electric aircraft towing vehicle called TaxiBot in 2020. The COVID-19 pandemic created an opportunity for extensive operational testing on a near-empty airport. Due to the low background noise levels in this situation, also a noise assessment of taxiing with the TaxiBot versus conventional two-engine taxiing was performed. This assessment can be used to evaluate the noise levels to which ground workers or neighbouring communities are exposed due to TaxiBot operations. For the noise measurements a phased microphone array was used, which allowed not only for a noise level and directionality assessment, but also for noise source identification. This paper compares the noise emissions and noise sources between a taxibotted and conventional taxiing operation. The results show that a taxibotted taxiing operation produces significantly lower noise levels. Additionally, acoustic imaging shows that the TaxiBot engine is the main noise source for a taxibotted pass-by manoeuvre.


Author(s):  
Evgeniya Gnatyuk ◽  
Arkadiy Skvortsov ◽  
Svetlana Kuleshova

This paper presents the results of fatigue tests of titanium alloy, and also describes the use of the hypothesis of linear damage summation when processing the results of fatigue tests. On the basis of the experiments, the endurance limit of the titanium alloy was determined, which lies in the range from 460 to 480 MPa with the number of cycles from 105 to 108. The purpose of the experiment was to determine the endurance limit of high strength material, as well as a mathematical measurement of the expected destruction. In this study, empirical methods were used such as indirect observation of the object under study, description and measurement of technical influences exerted on it by an artificial means, as well as linear regression analysis to establish the relationship between stress and durability. As a result of the experiment, fatigue curves were obtained for various probabilities, which give grounds to conclude that the use of the linear damage summation hypothesis in processing the results of fatigue tests entails a satisfactory practical accuracy of the calculation of endurance limit. This experiment is aimed at improving metal production by studying the quality of titanium alloy test pieces and performing mathematical analysis of possible problems arising in the process of its operational testing.


2021 ◽  
pp. 1-11
Author(s):  
Adriana Andreeva-Mori ◽  
Daisuke Kubo ◽  
Keiji Kobayashi ◽  
Yoshinori Okuno ◽  
Jeffrey Homola ◽  
...  

2021 ◽  
Author(s):  
◽  
Iļja Dvorņikovs

The Ph. D. Thesis is devoted to the development of a methodology for virtual-physical testing of traction electrical equipment, taking into account the individual design parameters of power equipment. Evaluating the topicality of the dissertation topic, the normative base of traction electrical equipment testing methods has been studied in detail. The dissertation gives a description of mathematical modelling of electrical equipment operation as well as describes the identification of electrical equipment parameters. The developed methodology ultimately allows to determine the functional compliance of traction power equipment to critical conditions that would be possible during operational testing and operation during the electrical equipment design and factory testing stages. The work includes theoretical calculations, computer modelling tasks, and the results of practical experiments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaozhi Xu ◽  
Jiajie Wang ◽  
Awu Zhou ◽  
Siyuan Dong ◽  
Kaiqiang Shi ◽  
...  

AbstractMembrane-based gas separation exhibits many advantages over other conventional techniques; however, the construction of membranes with simultaneous high selectivity and permeability remains a major challenge. Herein, (LDH/FAS)n-PDMS hybrid membranes, containing two-dimensional sub-nanometre channels were fabricated via self-assembly of unilamellar layered double hydroxide (LDH) nanosheets and formamidine sulfinic acid (FAS), followed by spray-coating with a poly(dimethylsiloxane) (PDMS) layer. A CO2 transmission rate for (LDH/FAS)25-PDMS of 7748 GPU together with CO2 selectivity factors (SF) for SF(CO2/H2), SF(CO2/N2) and SF(CO2/CH4) mixtures as high as 43, 86 and 62 respectively are observed. The CO2 permselectivity outperforms most reported systems and is higher than the Robeson or Freeman upper bound limits. These (LDH/FAS)n-PDMS membranes are both thermally and mechanically robust maintaining their highly selective CO2 separation performance during long-term operational testing. We believe this highly-efficient CO2 separation performance is based on the synergy of enhanced solubility, diffusivity and chemical affinity for CO2 in the sub-nanometre channels.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2966
Author(s):  
Norbert Érces ◽  
László Kajtár

In the course of our investigations, we burned high-quality logs as well as wood briquettes in a conventional, manually fed mixed-fired boiler, under different operating parameters. Based on the evaluation of the measurement results, there is a significant difference in terms of recoverable energy and carbon monoxide emissions for the two fuels burned in the same device at different air supply parameters. Studies have shown that a constantly changing position of the draft control door has an adverse effect on carbon monoxide emissions as well as the energy produced. In the case of a constant draft door setting, the preset values that can be considered ideal for energy yield and CO emissions were determined for the two fuel types. The obtained results were compared with the requirements according to the MSZ EN 303-5 standard.


Author(s):  
Jingsi Jiao ◽  
Cheng Lu ◽  
Valerie Linton ◽  
Frank Barbaro

Abstract The mechanical performance of the pipe sample has a direct influence on their application in real environments and a significant economic impact on manufacturers, especially when the pipe products do not meet required specifications. There is often a change in the yield strength from plate to pipe due to strain hardening and the Bauschinger effect. The current work sets out to provide a critical knowledge base for this change, with emphasizing the important influence of the plate mechanical properties on the pipe. So that the quality of pipe can be further ensured. In the work, firstly, the historical data of the pipe yield strength were collected and plotted together from a wide range of published sources to provide a broad quantitative insight, which provides a quantitative review on the parameters that govern the final pipe yield strength. Secondly, a Finite Element model of the pipe forming and mechanical evaluation was developed and then validated with available industrial testing results, in where the effects of operational and testing parameters on the pipe yield strength were analysed and discussed in detail. Finally, using the validated Finite Element model, a parametric study was conducted to dissect the individual role that each of the material parameters plays on changing the yield strength from plate to pipe. We found that the yield strength of the pipe can differ significantly. This work sheds lights on the desired plate mechanical properties to optimize the final pipe yield strength.


Sign in / Sign up

Export Citation Format

Share Document