cauchy type problem
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 15)

H-INDEX

5
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Vladimir E. Fedorov ◽  
Wei-Shih Du ◽  
Mikhail M. Turov

Incomplete Cauchy-type problems are considered for linear multi-term equations solved with respect to the highest derivative in Banach spaces with fractional Riemann–Liouville derivatives and with linear closed operators at them. Some new existence and uniqueness theorems for solutions are presented explicitly and the analyticity of the solutions of the homogeneous equations are also shown. The asymmetry of the Cauchy-type problem under study is expressed in the presence of a so-called defect, which shows the number of lower-order initial conditions that should not be set when setting the problem. As applications, our abstract results are used in the study of a class of initial-boundary value problems for multi-term equations with Riemann–Liouville derivatives in time and with polynomials of a self-adjoint elliptic differential operator with respect to spatial variables.


2021 ◽  
Vol 104 (4) ◽  
pp. 130-141
Author(s):  
S. Shaimardan ◽  
◽  
N.S. Tokmagambetov ◽  
◽  

This paper is devoted to explicit and numerical solutions to linear fractional q-difference equations and the Cauchy type problem associated with the Riemann-Liouville fractional q-derivative in q-calculus. The approaches based on the reduction to Volterra q-integral equations, on compositional relations, and on operational calculus are presented to give explicit solutions to linear q-difference equations. For simplicity, we give results involving fractional q-difference equations of real order a > 0 and given real numbers in q-calculus. Numerical treatment of fractional q-difference equations is also investigated. Finally, some examples are provided to illustrate our main results in each subsection.


2021 ◽  
Vol 5 (3) ◽  
pp. 109
Author(s):  
Batirkhan Kh. Turmetov ◽  
Kairat I. Usmanov ◽  
Kulzina Zh. Nazarova

The methods for constructing solutions to integro-differential equations of the Volterra type are considered. The equations are related to fractional conformable derivatives. Explicit solutions of homogeneous and inhomogeneous equations are constructed, and a Cauchy-type problem is studied. It should be noted that the considered method is based on the construction of normalized systems of functions with respect to a differential operator of fractional order.


Author(s):  
Batirkhan kh. Turmetov ◽  
Kairat I. Usmanov ◽  
Kulzina Zh. Nazarova

The methods for constructing solutions to integro-differential equations of the Volterra type are considered. The equations are related to fractional conformable derivatives. Explicit solutions of homogeneous and inhomogeneous equations are constructed and a Cauchy-type problem is studied. It should be noted that the considered method is based on the construction of normalized systems of functions with respect to a differential operator of fractional order.


2020 ◽  
Vol 30 (10) ◽  
pp. 4475-4492
Author(s):  
Magda Joachimiak

Purpose In this paper, the Cauchy-type problem for the Laplace equation was solved in the rectangular domain with the use of the Chebyshev polynomials. The purpose of this paper is to present an optimal choice of the regularization parameter for the inverse problem, which allows determining the stable distribution of temperature on one of the boundaries of the rectangle domain with the required accuracy. Design/methodology/approach The Cauchy-type problem is ill-posed numerically, therefore, it has been regularized with the use of the modified Tikhonov and Tikhonov–Philips regularization. The influence of the regularization parameter choice on the solution was investigated. To choose the regularization parameter, the Morozov principle, the minimum of energy integral criterion and the L-curve method were applied. Findings Numerical examples for the function with singularities outside the domain were solved in this paper. The values of results change significantly within the calculation domain. Next, results of the sought temperature distributions, obtained with the use of different methods of choosing the regularization parameter, were compared. Methods of choosing the regularization parameter were evaluated by the norm Nmax. Practical implications Calculation model described in this paper can be applied to determine temperature distribution on the boundary of the heated wall of, for instance, a boiler or a body of the turbine, that is, everywhere the temperature measurement is impossible to be performed on a part of the boundary. Originality/value The paper presents a new method for solving the inverse Cauchy problem with the use of the Chebyshev polynomials. The choice of the regularization parameter was analyzed to obtain a solution with the lowest possible sensitivity to input data disturbances.


Sign in / Sign up

Export Citation Format

Share Document