relay neuron
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 1)

2019 ◽  
Vol 216 (11) ◽  
pp. 2503-2514 ◽  
Author(s):  
Peter M. Bradley ◽  
Carmen K. Denecke ◽  
Almir Aljovic ◽  
Anja Schmalz ◽  
Martin Kerschensteiner ◽  
...  

The remodeling of supraspinal axonal circuits mediates functional recovery after spinal cord injury. This process critically depends on the selection of appropriate synaptic connections between cortical projection and spinal relay neurons. To unravel the principles that guide this target selection, we used genetic and chemogenetic tools to modulate NMDA receptor (NMDAR) integrity and function, CREB-mediated transcription, and neuronal firing of relay neurons during injury-induced corticospinal remodeling. We show that NMDAR signaling and CREB-mediated transcription maintain nascent corticospinal tract (CST)–relay neuron contacts. These activity-dependent signals act during a defined period of circuit remodeling and do not affect mature or uninjured circuits. Furthermore, chemogenetic modulation of relay neuron activity reveals that the regrowing CST axons select their postsynaptic partners in a competitive manner and that preventing such activity-dependent shaping of corticospinal circuits limits motor recovery after spinal cord injury.


2017 ◽  
Vol 34 ◽  
Author(s):  
ELIZABETH Y. LITVINA ◽  
CHINFEI CHEN

AbstractThe thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term “relay”. The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.


2014 ◽  
Vol 112 (7) ◽  
pp. 1714-1728 ◽  
Author(s):  
Jessica L. Hauser ◽  
Xiaojin Liu ◽  
Elizabeth Y. Litvina ◽  
Chinfei Chen

The retinogeniculate synapse, the connection between retinal ganglion cells (RGC) and thalamic relay neurons, undergoes robust changes in connectivity over development. This process of synapse elimination and strengthening of remaining inputs is thought to require synapse specificity. Here we show that glutamate spillover and asynchronous release are prominent features of retinogeniculate synaptic transmission during this period. The immature excitatory postsynaptic currents exhibit a slow decay time course that is sensitive to low-affinity glutamate receptor antagonists and extracellular calcium concentrations, consistent with glutamate spillover. Furthermore, we uncover and characterize a novel, purely spillover-mediated AMPA receptor current from immature relay neurons. The isolation of this current strongly supports the presence of spillover between boutons of different RGCs. In addition, fluorescence measurements of presynaptic calcium transients suggest that prolonged residual calcium contributes to both glutamate spillover and asynchronous release. These data indicate that, during development, far more RGCs contribute to relay neuron firing than would be expected based on predictions from anatomy alone.


2014 ◽  
Vol 19 (9) ◽  
pp. 3255-3266 ◽  
Author(s):  
Chen Liu ◽  
Jiang Wang ◽  
Huiyan Li ◽  
Zhiqin Xue ◽  
Bin Deng ◽  
...  

2014 ◽  
Vol 112 (4) ◽  
pp. 942-950 ◽  
Author(s):  
David J. Lin ◽  
Erin Kang ◽  
Chinfei Chen

Recent studies have demonstrated that vision influences the functional remodeling of the mouse retinogeniculate synapse, the connection between retinal ganglion cells and thalamic relay neurons in the dorsal lateral geniculate nucleus (LGN). Initially, each relay neuron receives a large number of weak retinal inputs. Over a 2- to 3-wk developmental window, the majority of these inputs are eliminated, and the remaining inputs are strengthened. This period of refinement is followed by a critical period when visual experience changes the strength and connectivity of the retinogeniculate synapse. Visual deprivation of mice by dark rearing from postnatal day (P)20 results in a dramatic weakening of synaptic strength and recruitment of additional inputs. In the present study we asked whether experience-dependent plasticity at the retinogeniculate synapse represents a homeostatic response to changing visual environment. We found that visual experience starting at P20 following visual deprivation from birth results in weakening of existing retinal inputs onto relay neurons without significant changes in input number, consistent with homeostatic synaptic scaling of retinal inputs. On the other hand, the recruitment of new inputs to the retinogeniculate synapse requires previous visual experience prior to the critical period. Taken together, these findings suggest that diverse forms of homeostatic plasticity drive experience-dependent remodeling at the retinogeniculate synapse.


2010 ◽  
Vol 67 (1) ◽  
pp. 95-97 ◽  
Author(s):  
Jihyun Noh ◽  
Hee-joo Choi ◽  
Jun-mo Chung

Sign in / Sign up

Export Citation Format

Share Document