spherical basis
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 2)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Thomas Roughton

<p>Indirect illumination is an important part of realistic images, and accurately simulating the complex effects of indirect illumination in real-time applications has long been a challenge for the industry. One popular approach is to use offline precomputed solutions such as lightmaps (textures containing the precomputed lighting in a scene) to efficiently approximate these effects. Unfortunately, these offline solutions have historically enforced long iteration times that come at a cost to artist productivity. These solutions have additionally either supported only the low-frequency diffuse component of indirect lighting, yielding poor visual results for glossy or metallic materials, or have used overly expensive approximations.  In recent years, the state of the art lightmap precomputation pipeline has shifted to using highly vectorised path tracing, often on GPU hardware, to compute the indirect illumination effects. The use of path tracing enables progressive rendering, wherein an approximation to the full solution is found and then refined as opposed to solving for the final result in a single step. Progressive rendering through path tracing thereby helps to provide rapid iteration for artists.  This thesis describes a system that can progressively path-trace indirect illumination lightmaps on the GPU.Contributing to this system, itintroduces a new gather-based method for sample accumulation, enhances algorithms from prior work, and presents a range of encoding methods, including a novel progressive method for non-negative least-squares encoding of spherical basis functions.  In addition, it presents a novel, efficient solution for high-quality precomputed diffuse and low-frequency specular indirect illumination that extends the Ambient Dice family of spherical basis functions. This solution provides comparable or better specular reconstruction to prior work at lower runtime cost and has potential for widespread use in real-time applications.</p>


2021 ◽  
Author(s):  
◽  
Thomas Roughton

<p>Indirect illumination is an important part of realistic images, and accurately simulating the complex effects of indirect illumination in real-time applications has long been a challenge for the industry. One popular approach is to use offline precomputed solutions such as lightmaps (textures containing the precomputed lighting in a scene) to efficiently approximate these effects. Unfortunately, these offline solutions have historically enforced long iteration times that come at a cost to artist productivity. These solutions have additionally either supported only the low-frequency diffuse component of indirect lighting, yielding poor visual results for glossy or metallic materials, or have used overly expensive approximations.  In recent years, the state of the art lightmap precomputation pipeline has shifted to using highly vectorised path tracing, often on GPU hardware, to compute the indirect illumination effects. The use of path tracing enables progressive rendering, wherein an approximation to the full solution is found and then refined as opposed to solving for the final result in a single step. Progressive rendering through path tracing thereby helps to provide rapid iteration for artists.  This thesis describes a system that can progressively path-trace indirect illumination lightmaps on the GPU.Contributing to this system, itintroduces a new gather-based method for sample accumulation, enhances algorithms from prior work, and presents a range of encoding methods, including a novel progressive method for non-negative least-squares encoding of spherical basis functions.  In addition, it presents a novel, efficient solution for high-quality precomputed diffuse and low-frequency specular indirect illumination that extends the Ambient Dice family of spherical basis functions. This solution provides comparable or better specular reconstruction to prior work at lower runtime cost and has potential for widespread use in real-time applications.</p>


2016 ◽  
Vol 113 (30) ◽  
pp. E4286-E4293 ◽  
Author(s):  
Dzmitry Padhorny ◽  
Andrey Kazennov ◽  
Brandon S. Zerbe ◽  
Kathryn A. Porter ◽  
Bing Xia ◽  
...  

Energy evaluation using fast Fourier transforms (FFTs) enables sampling billions of putative complex structures and hence revolutionized rigid protein–protein docking. However, in current methods, efficient acceleration is achieved only in either the translational or the rotational subspace. Developing an efficient and accurate docking method that expands FFT-based sampling to five rotational coordinates is an extensively studied but still unsolved problem. The algorithm presented here retains the accuracy of earlier methods but yields at least 10-fold speedup. The improvement is due to two innovations. First, the search space is treated as the product manifold SO(3)×(SO(3)∖S1), where SO(3) is the rotation group representing the space of the rotating ligand, and (SO(3)∖S1) is the space spanned by the two Euler angles that define the orientation of the vector from the center of the fixed receptor toward the center of the ligand. This representation enables the use of efficient FFT methods developed for SO(3). Second, we select the centers of highly populated clusters of docked structures, rather than the lowest energy conformations, as predictions of the complex, and hence there is no need for very high accuracy in energy evaluation. Therefore, it is sufficient to use a limited number of spherical basis functions in the Fourier space, which increases the efficiency of sampling while retaining the accuracy of docking results. A major advantage of the method is that, in contrast to classical approaches, increasing the number of correlation function terms is computationally inexpensive, which enables using complex energy functions for scoring.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
I. A. Shilin ◽  
Junesang Choi

Computing the matrix elements of the linear operator, which transforms the spherical basis ofSO(3,1)-representation space into the hyperbolic basis, very recently, Shilin and Choi (2013) presented an integral formula involving the product of two Legendre functions of the first kind expressed in terms of 4F3-hypergeometric function and, using the general Mehler-Fock transform, another integral formula for the Legendre function of the first kind. In the sequel, we investigate the pairwise connections between the spherical, hyperbolic, and parabolic bases. Using the above connections, we give an interesting series involving the Gauss hypergeometric functions expressed in terms of the Macdonald function.


2013 ◽  
Vol 115 (5) ◽  
pp. 745-752 ◽  
Author(s):  
V. G. Farafonov ◽  
V. B. Il’in
Keyword(s):  

2013 ◽  
Vol 28 (08) ◽  
pp. 1350022
Author(s):  
WERNER SCHEID

The paper considers the free spherical Dirac equation with a boundary condition at r = R which is a slight extension of the original boundary condition of the MIT bag model. We discuss the basis states and apply them for a diagonalization of Coulomb potentials. The obtained results agree quite well with the lowest bound states with κ = -1, +1 and -2 and their expectation values [Formula: see text]. There appear basis states with energies -mc2 < E < mc2 under certain circumstances of the boundary condition. These states are concentrated at the boundary.


Sign in / Sign up

Export Citation Format

Share Document