discontinuous gas exchange cycle
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2014 ◽  
Vol 4 ◽  
pp. 48-53 ◽  
Author(s):  
Heidy L Contreras ◽  
Erica C Heinrich ◽  
Timothy J Bradley

2012 ◽  
Vol 8 (4) ◽  
pp. 682-684 ◽  
Author(s):  
Philip G. D. Matthews ◽  
Edward P. Snelling ◽  
Roger S. Seymour ◽  
Craig R. White

The discontinuous gas exchange cycle (DGC) is a breathing pattern displayed by many insects, characterized by periodic breath-holding and intermittently low tracheal O 2 levels. It has been hypothesized that the adaptive value of DGCs is to reduce oxidative damage, with low tracheal O 2 partial pressures ( P O 2 ∼2–5 kPa) occurring to reduce the production of oxygen free radicals. If this is so, insects displaying DGCs should continue to actively defend a low tracheal P O 2 even when breathing higher than atmospheric levels of oxygen (hyperoxia). This behaviour has been observed in moth pupae exposed to ambient P O 2 up to 50 kPa. To test this observation in adult insects, we implanted fibre-optic oxygen optodes within the tracheal systems of adult migratory locusts Locusta migratoria exposed to normoxia, hypoxia and hyperoxia. In normoxic and hypoxic atmospheres, the minimum tracheal P O 2 that occurred during DGCs varied between 3.4 and 1.2 kPa. In hyperoxia up to 40.5 kPa, the minimum tracheal P O 2 achieved during a DGC exceeded 30 kPa, increasing with ambient levels. These results are consistent with a respiratory control mechanism that functions to satisfy O 2 requirements by maintaining P O 2 above a critical level, not defend against high levels of O 2 .


2002 ◽  
Vol 205 (16) ◽  
pp. 2489-2497 ◽  
Author(s):  
Frances D. Duncan ◽  
Marcus J. Byrne

SUMMARY The sealed subelytral cavity of many flightless beetle species is widely acknowledged to be an adaptation to water saving in arid-habitat species. However, this hypothesis relies on the acceptance of two largely untested assumptions: (i) that the movement of respiratory gases is unidirectional from anterior to posterior and (ii) that the coordinated action of the spiracles directs this flow. We tested these assumptions by simultaneously measuring CO2 and O2 exchange at the anterior mesothorax,independently of gas exchange in the posterior body, which included the subelytral cavity, of a large apterous beetle, Circellium bacchus. Flow-through respirometry revealed a marked discontinuous gas-exchange cycle(DGC) pattern from the anterior half of the body. Very little CO2was released from the posterior body, where the DGC was not apparent. Labelled air was shown to flow forwards from the posterior to the anterior body. Individual sampling from the mesothoracic spiracles revealed that the right mesothoracic spiracle, lying outside the elytral cavity, is the primary route for respiratory gas exchange in C. bacchus at rest. This discovery necessitates a reassessment of the currently assumed role of the subelytral cavity in water conservation and is, to our knowledge, the first demonstration of forward airflow associated with the unilateral use of a single thoracic spiracle for respiration in an insect.


1995 ◽  
Vol 198 (7) ◽  
pp. 1613-1620 ◽  
Author(s):  
J Lighton ◽  
D Garrigan

Using normoxic and hypoxic flow-through respirometry, we investigated the regulation of the closed-spiracle (C) and the nature of the fluttering-spiracle (F) phases of the discontinuous gas-exchange cycle (DGC) of the ant Camponotus vicinus. We predicted that as ambient O2 concentrations declined, DGC frequency would increase, because C phase duration would decrease (reflecting earlier hypoxic initiation of the F phase) and F phase duration would shorten (reflecting nitrogen accumulation), if convective mass inflow caused by a negative pressure gradient across the spiracles, rather than by diffusion, is the dominant F phase gas-exchange mechanism. C phase duration decreased with declining ambient O2 concentrations, as predicted. In contrast, DGC frequency decreased and F phase duration increased with decreasing ambient O2 concentrations. This was opposite to the expected trend if gas exchange in the F phase was mediated by convection, as is generally hypothesized. We therefore cannot disprove that F phase gas exchange was largely or purely diffusion-based. In addition, our data show equivalent molar rates of H2O and CO2 emission during the F phase. In contrast, during the open-spiracle phase, the duration of which was not affected by ambient O2 concentration, far more H2O than CO2 was lost. We discuss these findings and suggest that current hypotheses of F phase gas-exchange mechanisms and function in reducing respiratory water loss in adult insects may require revision.


Sign in / Sign up

Export Citation Format

Share Document