poc export flux
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 8 ◽  
Author(s):  
Peng Lin ◽  
Chen Xu ◽  
Wei Xing ◽  
Peter H. Santschi

Through a combination of selective extractions and molecular characterization techniques including Isoelectric Focusing Chromatography and Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass spectrometry, molecular structures of diatom (Phaeodactylum tricornutum) and coccolithophore (Emiliania huxleyi)-associated biopolymers that are responsible for the distinct partitioning behavior between 210Pb and 210Po were determined. Our results show that diatom-derived biopolymers have distinctive elemental grouping distributions as compared to those excreted by the coccolithophore, with the former consisting of more heterogeneous elements (i.e., nitrogen, sulfur and phosphorus-containing organic compounds). For the coccolithophore culture, two 210Pb-enriched biopolymers (non-attached exopolymeric substances and coccosphere shell-associated biopolymers) have a higher abundance of CHO-type compounds, suggesting CHO-only-type compounds as the main binding moieties for 210Pb. In contrast, such association was not evident in the diatom culture. Different with 210Pb, 210Po enrichment in coccolithophore-derived attached exopolymeric substances and Fe-Mn-associated metabolites coincided with the higher abundance of nitrogen/sulfur-containing organic compounds in these two biopolymer fractions, suggesting the strong parallel of Po with the production of nitrogen-rich organic matter as well as sulfur-containing amino acids. These different associations between 210Pb/210Po and organic functional groups were further explored by separating 210Pb or 210Po-labeled coccolithophore-derived biopolymers via isoelectric focusing. This technique suggests that phosphate group-containing molecules but not the other molecules that contain heterogeneous elements (e.g., CHONS, CHON, and CHOS) as the strongest binding agents for 210Pb, while the more hydrophobic (high protein to carbohydrate ratio) nitrogen/sulfur-enriched organic moieties acted as the main 210Po-binding ligands. It is concluded that the deficiency of 210Po with respect to 210Pb can be influenced by the relative abundance of nitrogen/sulfur-enriched organic moieties to the nitrogen/sulfur-depleted organic compounds in the water column. This behavior constrains the application of 210Po-210Pb approach to quantify the particulate organic carbon (POC) export flux in the ocean. It also explains that differences in chemical binding of the 210Po as compared to those of other radionuclides (e.g., thorium-234) as the main factor. That suggests that differences in decay half-lives or physical factors are less important when these nuclides are applied to estimate the POC flux in the ocean.


2014 ◽  
Vol 11 (9) ◽  
pp. 2465-2475 ◽  
Author(s):  
N. Jiao ◽  
Y. Zhang ◽  
K. Zhou ◽  
Q. Li ◽  
M. Dai ◽  
...  

Abstract. The causes for a productive upwelling region to be a source of CO2 are usually referred to the excess CO2 supplied via upwelling of high dissolved inorganic carbon (DIC) from deep water. Furthermore, we hypothesize that microbial activity plays a significant role on top of that. To test this hypothesis, multiple biogeochemical parameters were investigated at two cyclonic-eddy-induced upwelling sites, CE1 and CE2, in the western South China Sea. The data showed that upwelling can exert significant influences on biological activities in the euphotic zone and can also impact on particulate organic carbon (POC) export flux depending on upwelling conditions, such as the magnitude, timing, and duration of nutrient input and consequent microbial activities. At CE2, the increase of phytoplankton biomass caused by the upwelled nutrients resulted in increase of POC export flux compared to non-eddy reference sites, while at CE1 the microbial respiration of organic carbon stimulated by the upwelled nutrients significantly contributed to the attenuation of POC export flux. These results suggest that on top of upwelled DIC, microbial activities stimulated by upwelled nutrients and labile organic carbon produced by phytoplankton can play a critical role for an upwelling area to be outgassing or uptaking CO2. We point out that even though an upwelling region is outgassing CO2, carbon sequestration still takes place through the POC-based biological pump as well as the refractory dissolved organic carbon (RDOC)-based microbial carbon pump.


2013 ◽  
Vol 10 (8) ◽  
pp. 13399-13426
Author(s):  
N. Jiao ◽  
Y. Zhang ◽  
K. Zhou ◽  
Q. Li ◽  
M. Dai ◽  
...  

Abstract. Marine upwelling regions are known to be productive in carbon fixation and thus thought to be sinks of CO2, whereas many upwelling areas in the ocean are actually sources rather than sinks of CO2. To address this paradox, multiple biogeochemical parameters were investigated at two cyclonic-eddy-induced upwelling sites CE1 and CE2 in the western South China Sea. The results showed that upwelling can exert significant influences on biological activities in the euphotic zone and can either increase or decrease particulate organic carbon (POC) export flux depending on upwelling conditions such as the magnitude, timing, and duration of nutrient input and consequent microbial activities. At CE2 the increase of phytoplankton biomass caused by the upwelled nutrients resulted in increase of POC export flux compared to non-eddy reference sites, while at CE1 the microbial respiration of organic carbon stimulated by the upwelled nutrients significantly contributed to the attenuation of POC export flux, aggravating outgassing of CO2. These results suggest that on top of upwelled dissolved inorganic carbon release, microbial activities stimulated by upwelled nutrients and phytoplankton labile organic carbon can play a critical role for a marine upwelling area to be a source rather than a sink of CO2. Meanwhile, we point out that even though an upwelling region is outgassing, carbon sequestration still takes place through the POC-based biological pump as well as the refractory dissolved organic carbon (RDOC)-based microbial carbon pump.


2005 ◽  
Vol 52 (24-26) ◽  
pp. 3427-3451 ◽  
Author(s):  
S.B. Moran ◽  
R.P. Kelly ◽  
K. Hagstrom ◽  
J.N. Smith ◽  
J.M. Grebmeier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document