exopolymeric substances
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 31)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
pp. 94-122
Author(s):  
Shreyas Anantray Bhatt

Life on the Earth has evolved in the cold environments. Such cold habitats pose special challenges to the microbes in cold ecosystems, such as minimum metabolic activities, very limited nutrient availability, and often extreme conditions such as pH and salinity apart from temperature. Microbial communities surviving under these extreme conditions must have evolved complex structural and functional adaptations. Prokaryotic adaptations to cold environments are through physiological adaptations by increasing membrane fluidity through large amount of unsaturated fatty acids. These microbes also possess some cold adapted proteins whose steady state levels are maintained. They also produce certain compounds such as polyamines, sugars, polyols, amino acids, and some antifreeze proteins to protect themselves under freezing conditions. They also produce exopolymeric substances that promote adhesion of microbes to moist surfaces to induce biofilm formation which helps getting nutrients and protect the cells from harsh conditions. Antioxidants help destroying toxic reactive oxygen species.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kerstin Elert ◽  
Encarnación Ruiz-Agudo ◽  
Fadwa Jroundi ◽  
Maria Teresa Gonzalez-Muñoz ◽  
Barbara W. Fash ◽  
...  

AbstractMuch stone sculptural and architectural heritage is crumbling, especially in intense tropical environments. This is exemplified by significant losses on carvings made of tuff stone at the Classic Maya site of Copan. Here we demonstrate that Copan stone primarily decays due to stress generated by humidity-related clay swelling resulting in spalling and material loss, a damaging process that appears to be facilitated by the microbial bioweathering of the tuff stone minerals (particularly feldspars). Such a weathering process is not prevented by traditional polymer- and alkoxysilane-based consolidants applied in the past. As an alternative to such unsuccessful conservation treatments, we prove the effectiveness of a bioconservation treatment based on the application of a sterile nutritional solution that selectively activates the stone´s indigenous bacteria able to produce CaCO3 biocement. The treatment generates a bond with the original matrix to significantly strengthen areas of loss, while unexpectedly, bacterial exopolymeric substances (EPS) impart hydrophobicity and reduce clay swelling. This environmentally-friendly bioconservation treatment is able to effectively and safely preserve fragile stones in tropical conditions, opening the possibility for its widespread application in the Maya area, and elsewhere.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 114
Author(s):  
Antonietta Quigg ◽  
Peter H. Santschi ◽  
Adrian Burd ◽  
Wei-Chun Chin ◽  
Manoj Kamalanathan ◽  
...  

Marine gels (nano-, micro-, macro-) and marine snow play important roles in regulating global and basin-scale ocean biogeochemical cycling. Exopolymeric substances (EPS) including transparent exopolymer particles (TEP) that form from nano-gel precursors are abundant materials in the ocean, accounting for an estimated 700 Gt of carbon in seawater. This supports local microbial communities that play a critical role in the cycling of carbon and other macro- and micro-elements in the ocean. Recent studies have furthered our understanding of the formation and properties of these materials, but the relationship between the microbial polymers released into the ocean and marine snow remains unclear. Recent studies suggest developing a (relatively) simple model that is tractable and related to the available data will enable us to step forward into new research by following marine snow formation under different conditions. In this review, we synthesize the chemical and physical processes. We emphasize where these connections may lead to a predictive, mechanistic understanding of the role of gels in marine snow formation and the biogeochemical functioning of the ocean.


2021 ◽  
Vol 8 ◽  
Author(s):  
Antonietta Quigg ◽  
Peter H. Santschi ◽  
Chen Xu ◽  
Kai Ziervogel ◽  
Manoj Kamalanathan ◽  
...  

Microbes (bacteria, phytoplankton) in the ocean are responsible for the copious production of exopolymeric substances (EPS) that include transparent exopolymeric particles. These materials act as a matrix to form marine snow. After the Deepwater Horizon oil spill, marine oil snow (MOS) formed in massive quantities and influenced the fate and transport of oil in the ocean. The processes and pathways of MOS formation require further elucidation to be better understood, in particular we need to better understand how dispersants affect aggregation and degradation of oil. Toward that end, recent work has characterized EPS as a function of microbial community and environmental conditions. We present a conceptual model that incorporates recent findings in our understanding of the driving forces of MOS sedimentation and flocculent accumulation (MOSSFA) including factors that influence the scavenging of oil into MOS and the routes that promote decomposition of the oil post MOS formation. In particular, the model incorporates advances in our understanding of processes that control interactions between oil, dispersant, and EPS in producing either MOS that can sink or dispersed gels promoting microbial degradation of oil compounds. A critical element is the role of protein to carbohydrate ratios (P/C ratios) of EPS in the aggregation process of colloid and particle formation. The P/C ratio of EPS provides a chemical basis for the “stickiness” factor that is used in analytical or numerical simulations of the aggregation process. This factor also provides a relative measure for the strength of attachment of EPS to particle surfaces. Results from recent laboratory experiments demonstrate (i) the rapid formation of microbial assemblages, including their EPS, on oil droplets that is enhanced in the presence of Corexit-dispersed oil, and (ii) the subsequent rapid oil oxidation and microbial degradation in water. These findings, combined with the conceptual model, further improve our understanding of the fate of the sinking MOS (e.g., subsequent sedimentation and preservation/degradation) and expand our ability to predict the behavior and transport of spilled oil in the ocean, and the potential effects of Corexit application, specifically with respect to MOS processes (i.e., formation, fate, and half-lives) and Marine Oil Snow Sedimentation and Flocculent Accumulation.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 83
Author(s):  
Peter H. Santschi ◽  
Wei-Chun Chin ◽  
Antonietta Quigg ◽  
Chen Xu ◽  
Manoj Kamalanathan ◽  
...  

Microgels play critical roles in a variety of processes in the ocean, including element cycling, particle interactions, microbial ecology, food web dynamics, air–sea exchange, and pollutant distribution and transport. Exopolymeric substances (EPS) from various marine microbes are one of the major sources for marine microgels. Due to their amphiphilic nature, many types of pollutants, especially hydrophobic ones, have been found to preferentially associate with marine microgels. The interactions between pollutants and microgels can significantly impact the transport, sedimentation, distribution, and the ultimate fate of these pollutants in the ocean. This review on marine gels focuses on the discussion of the interactions between gel-forming EPS and pollutants, such as oil and other hydrophobic pollutants, nanoparticles, and metal ions.


Desalination ◽  
2021 ◽  
Vol 508 ◽  
pp. 115047
Author(s):  
Ying Shi Chang ◽  
Yi Tong Cheah ◽  
Leow Hui Ting Lyly ◽  
Nur Ir Imani Ishak ◽  
Yin Sim Ng ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Peng Lin ◽  
Chen Xu ◽  
Wei Xing ◽  
Peter H. Santschi

Through a combination of selective extractions and molecular characterization techniques including Isoelectric Focusing Chromatography and Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass spectrometry, molecular structures of diatom (Phaeodactylum tricornutum) and coccolithophore (Emiliania huxleyi)-associated biopolymers that are responsible for the distinct partitioning behavior between 210Pb and 210Po were determined. Our results show that diatom-derived biopolymers have distinctive elemental grouping distributions as compared to those excreted by the coccolithophore, with the former consisting of more heterogeneous elements (i.e., nitrogen, sulfur and phosphorus-containing organic compounds). For the coccolithophore culture, two 210Pb-enriched biopolymers (non-attached exopolymeric substances and coccosphere shell-associated biopolymers) have a higher abundance of CHO-type compounds, suggesting CHO-only-type compounds as the main binding moieties for 210Pb. In contrast, such association was not evident in the diatom culture. Different with 210Pb, 210Po enrichment in coccolithophore-derived attached exopolymeric substances and Fe-Mn-associated metabolites coincided with the higher abundance of nitrogen/sulfur-containing organic compounds in these two biopolymer fractions, suggesting the strong parallel of Po with the production of nitrogen-rich organic matter as well as sulfur-containing amino acids. These different associations between 210Pb/210Po and organic functional groups were further explored by separating 210Pb or 210Po-labeled coccolithophore-derived biopolymers via isoelectric focusing. This technique suggests that phosphate group-containing molecules but not the other molecules that contain heterogeneous elements (e.g., CHONS, CHON, and CHOS) as the strongest binding agents for 210Pb, while the more hydrophobic (high protein to carbohydrate ratio) nitrogen/sulfur-enriched organic moieties acted as the main 210Po-binding ligands. It is concluded that the deficiency of 210Po with respect to 210Pb can be influenced by the relative abundance of nitrogen/sulfur-enriched organic moieties to the nitrogen/sulfur-depleted organic compounds in the water column. This behavior constrains the application of 210Po-210Pb approach to quantify the particulate organic carbon (POC) export flux in the ocean. It also explains that differences in chemical binding of the 210Po as compared to those of other radionuclides (e.g., thorium-234) as the main factor. That suggests that differences in decay half-lives or physical factors are less important when these nuclides are applied to estimate the POC flux in the ocean.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tanu Atriwal ◽  
Kashish Azeem ◽  
Fohad Mabood Husain ◽  
Afzal Hussain ◽  
Muhammed Nadeem Khan ◽  
...  

In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.


Sign in / Sign up

Export Citation Format

Share Document