nematic elastomers
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 16)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
L. Angela Mihai ◽  
Haoran Wang ◽  
Johann Guilleminot ◽  
Alain Goriely

Continuum models describing ideal nematic solids are widely used in theoretical studies of liquid crystal elastomers. However, experiments on nematic elastomers show a type of anisotropic response that is not predicted by the ideal models. Therefore, their description requires an additional term coupling elastic and nematic responses, to account for aeolotropic effects. In order to better understand the observed elastic response of liquid crystal elastomers, we analyse theoretically and computationally different stretch and shear deformations. We then compare the elastic moduli in the infinitesimal elastic strain limit obtained from the molecular dynamics simulations with the ones derived theoretically, and show that they are better explained by including nematic order effects within the continuum framework.


2021 ◽  
pp. 2100672
Author(s):  
Takuya Ohzono ◽  
Hiroyuki Minamikawa ◽  
Emiko Koyama ◽  
Yasuo Norikane

Author(s):  
Martin Jesenko ◽  
Bernd Schmidt

We derive geometrically linearized theories for incompressible materials from nonlinear elasticity theory in the small displacement regime. Our nonlinear stored energy densities may vary on the same (small) length scale as the typical displacements. This allows for applications to multiwell energies as, e.g. encountered in martensitic phases of shape memory alloys and models for nematic elastomers. Under natural assumptions on the asymptotic behavior of such densities we prove Gamma-convergence of the properly rescaled nonlinear energy functionals to the relaxation of an effective model. The resulting limiting theory is geometrically linearized in the sense that it acts on infinitesimal displacements rather than finite deformations, but will in general still have a limiting stored energy density that depends in a nonlinear way on the infinitesimal strains. Our results, in particular, establish a rigorous link of existing finite and infinitesimal theories for incompressible nematic elastomers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takuya Ohzono ◽  
Kaoru Katoh ◽  
Hiroyuki Minamikawa ◽  
Mohand O. Saed ◽  
Eugene M. Terentjev

AbstractNematic liquid crystal elastomers (N-LCE) exhibit intriguing mechanical properties, such as reversible actuation and soft elasticity, which manifests as a wide plateau of low nearly-constant stress upon stretching. N-LCE also have a characteristically slow stress relaxation, which sometimes prevents their shape recovery. To understand how the inherent nematic order retards and arrests the equilibration, here we examine hysteretic stress-strain characteristics in a series of specifically designed main-chain N-LCE, investigating both macroscopic mechanical properties and the microscopic nematic director distribution under applied strains. The hysteretic features are attributed to the dynamics of thermodynamically unfavoured hairpins, the sharp folds on anisotropic polymer strands, the creation and transition of which are restricted by the nematic order. These findings provide a new avenue for tuning the hysteretic nature of N-LCE at both macro- and microscopic levels via different designs of polymer networks, toward materials with highly nonlinear mechanical properties and shape-memory applications.


2020 ◽  
Vol 144 ◽  
pp. 104115 ◽  
Author(s):  
Ruobing Bai ◽  
Kaushik Bhattacharya
Keyword(s):  

2020 ◽  
Vol 4 (10) ◽  
Author(s):  
Zoey S. Davidson ◽  
Nadia Kapernaum ◽  
Jonathan Fiene ◽  
Frank Giesselmann ◽  
Metin Sitti

Sign in / Sign up

Export Citation Format

Share Document