integrable evolution
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 111 (1) ◽  
Author(s):  
B. Deconinck ◽  
A. S. Fokas ◽  
J. Lenells

AbstractThe unified transform method (UTM) provides a novel approach to the analysis of initial boundary value problems for linear as well as for a particular class of nonlinear partial differential equations called integrable. If the latter equations are formulated in two dimensions (either one space and one time, or two space dimensions), the UTM expresses the solution in terms of a matrix Riemann–Hilbert (RH) problem with explicit dependence on the independent variables. For nonlinear integrable evolution equations, such as the celebrated nonlinear Schrödinger (NLS) equation, the associated jump matrices are computed in terms of the initial conditions and all boundary values. The unknown boundary values are characterized in terms of the initial datum and the given boundary conditions via the analysis of the so-called global relation. In general, this analysis involves the solution of certain nonlinear equations. In certain cases, called linearizable, it is possible to bypass this nonlinear step. In these cases, the UTM solves the given initial boundary value problem with the same level of efficiency as the well-known inverse scattering transform solves the initial value problem on the infinite line. We show here that the initial boundary value problem on a finite interval with x-periodic boundary conditions (which can alternatively be viewed as the initial value problem on a circle) belongs to the linearizable class. Indeed, by employing certain transformations of the associated RH problem and by using the global relation, the relevant jump matrices can be expressed explicitly in terms of the so-called scattering data, which are computed in terms of the initial datum. Details are given for NLS, but similar considerations are valid for other well-known integrable evolution equations, including the Korteweg–de Vries (KdV) and modified KdV equations.


Author(s):  
A. S. Fokas ◽  
J. Lenells

We propose a new approach for the solution of initial value problems for integrable evolution equations in the periodic setting based on the unified transform. Using the nonlinear Schrödinger equation as a model example, we show that the solution of the initial value problem on the circle can be expressed in terms of the solution of a Riemann–Hilbert problem whose formulation involves quantities which are defined in terms of the initial data alone. Our approach provides an effective solution of the problem on the circle which is conceptually analogous to the solution of the problem on the line via the inverse scattering transform.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sen Ming ◽  
Shaoyong Lai ◽  
Yeqin Su

Abstract This work is devoted to investigating the local well-posedness for an integrable evolution equation and behaviors of its solutions, which possess blow-up criteria and persistence property. The existence and uniqueness of analytic solutions with analytic initial values are established. The solutions are analytic for both variables, globally in space and locally in time. The effects of coefficients λ and β on the solutions are given.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Angela Slavova ◽  
Petar Popivanov

Abstract This paper deals at first with a fully integrable evolution system of nonlinear partial differential equations (PDEs) which is a generalization of the classical Heisenberg ferromagnet equation. Then the scalar variant of this system is considered. Looking for solutions of special form, the problem of finding explicit solutions of the above-mentioned equations is reduced to the global solvability of overdetermined real-valued systems of nonlinear PDEs. In many cases particular solutions which are not solitons are expressed by classical functions including some special ones as Jacobi elliptic functions, Legendre elliptic functions, and Weierstrass normal elliptic integrals. A geometrical visualization of several solutions is also proposed.


Sign in / Sign up

Export Citation Format

Share Document