gap soliton
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 2)

H-INDEX

19
(FIVE YEARS 0)

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 250
Author(s):  
Vakhtang Jandieri ◽  
Ramaz Khomeriki ◽  
Tornike Onoprishvili ◽  
Daniel Erni ◽  
Levan Chotorlishvili ◽  
...  

This review paper summarizes our previous findings regarding propagation characteristics of band-gap temporal solitons in photonic crystal waveguides with Kerr-type nonlinearity and a realization of functional and easily scalable all-optical NOT, AND and NAND logic gates. The proposed structure consists of a planar air-hole type photonic crystal in crystalline silicon as the nonlinear background material. A main advantage of proposing the gap-soliton as a signal carrier is that, by operating in the true time-domain, the temporal soliton maintains a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized paving the way to multiple-input ultrafast full-optical digital signal processing. In the suggested setup, due to the gap-soliton features, there is no need to amplify the output signal after each operation which can be directly used as a new input signal for another logical operation. The efficiency of the proposed logic gates as well as their scalability is validated using our original rigorous theoretical formalism confirmed by full-wave computational electromagnetics.


2020 ◽  
Vol 75 (8) ◽  
pp. 749-756
Author(s):  
Aavishkar Katti ◽  
Chittaranjan P. Katti

AbstractWe investigate the existence and stability of gap solitons supported by an optical lattice in biased photorefractive (PR) crystals having both the linear and quadratic electro-optic effect. Such PR crystals have an interesting interplay between the linear and quadratic nonlinearities. Gap solitons are predicted for the first time in such novel PR media. Taking a relevant example (PMN-0.33PT), we find that the gap solitons in the first finite bandgap are single humped, positive and symmetric solitons while those in the second finite band gap are antisymmetric and double humped. The power of the gap soliton depends upon the value of the axial propagation constant. We delineate three power regimes and study the gap soliton profiles in each region. The gap solitons in the first finite band gap are not linearly stable while those in the second finite band gap are found to be stable against small perturbations. We study their stability properties in detail throughout the finite band gaps. The interplay between the linear and quadratic electro-optic effect is studied by investigating the spatial profiles and stability of the gap solitons for different ratios of the linear and quadratic nonlinear coefficients.


2017 ◽  
Vol 112 ◽  
pp. 442-450 ◽  
Author(s):  
T.P. Lobo ◽  
L.E. Oliveira ◽  
S.B. Cavalcanti
Keyword(s):  

2016 ◽  
Vol 94 (12) ◽  
Author(s):  
J. V. T. Buller ◽  
R. E. Balderas-Navarro ◽  
K. Biermann ◽  
E. A. Cerda-Méndez ◽  
P. V. Santos
Keyword(s):  

2014 ◽  
Vol 22 (4) ◽  
Author(s):  
K. Rutkowska ◽  
U. Laudyn ◽  
P. Jung

AbstractIn this paper theoretical and experimental results regarding discrete light propagation in photonic liquid crystal fibres (PLCFs) are presented. Particular interest is focused on tunability of the beam guidance obtained due to the variation in either external temperature or optical power (with assumption of thermal nonlinearity taking place in liquid crystals). Highly tunable (discrete) diffraction and thermal self-(de)focusing are studied and tested in experimental conditions. Specifically, spatial light localization and/or delocalization due to the change in tuning parameters are demonstrated, with possibility of discrete spatial (gap) soliton propagation in particular conditions. Results of numerical simulations (performed for the Gaussian beams of different widths and wavelengths) have been compared to those from experimental tests performed in the PLCFs of interest. Owning to the limit of experimental means, direct qualitative comparison was not quite accessible. Nevertheless, a qualitative agreement between theoretical and experimental data (obtained in analogous conditions) has been achieved, suggesting a compact and widely-accessible platform for the study of tunable linear (and nonlinear) discrete light propagation in two-dimensional systems. Proposed photonic structures are of a great potential for all-optical beam shaping and switching.


2013 ◽  
Vol 39 (1) ◽  
pp. 178 ◽  
Author(s):  
S. B. Cavalcanti ◽  
P. A. Brandão ◽  
A. Bruno-Alfonso ◽  
L. E. Oliveira

Sign in / Sign up

Export Citation Format

Share Document