propagation constant
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 59)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Muhammad Arif Bin Jalil

Abstract: Optical fiber is a medium that made by silica or plastic, and widely used in transmitting information over longer distance especially in communication system. There are three types of fiber optic used in this project which are single mode stepindex (SMSI), multimode step-index (MMSI), and multimode graded-index (MMGI) in optical communication system. There are three objectives in this project in order to get the suitable optical fibers in the communication system. First objective is to simulate the result by using Excel and Origin software. The data and the formula of fiber optics will be key in through Excel software while the graph will be analyzed by using Origin software. The second objective is to compare the different types of fiber optics in communication system by comparing the several of their characteristics such as numerical aperture (NA), acceptance angle (θ(a)) and propagation constant (β). The performance of all types fiber optics are analyzed from the result using the standard communication wavelength of 1550 nm. The core diameter for SMSI, MMSI, and MMGI are 9, 200 and 50 μm respectively while the cladding diameter for SMSI and MMGI is 125 μm and 240 μm for MMSI. This diameter also been analyzed by using the standard value for optical communication system. Then, the comparison between SMSI, MMSI and MMGI will be made to choose the more suitable for optical communication system based on their characteristics. From the results, MMSI and MMGI give best performance compared to SMSI. After that, the third objective is to make the comparison between MMSI and MMGI in term of intermodal dispersion to compare the efficiencies of fiber optics. MMGI give the better result in terms of efficiencies for communication system compared to MMSI. Keyword: Single Mode Step-Index (SMSI), Multimode Step-Index (MMSI), Multimode Graded-Index (MMGI), Communication System, Excel and Origin Software


Author(s):  
Qiying Zhou ◽  
Hui-jun Li

Abstract We find and stabilize high dimensional dipole and quadrupole solitons in nonlocal competing cubic-quintic nonlinear media. By adjusting the propagation constant, cubic and quintic nonlinear coefficients, the stable intervals for dipole and quadrupole solitons which are parallel to $x$ axis and ones after rotating 45 degrees counterclockwise around the origin of coordinate are found. For the dipole solitons and ones after rotating, their stability is controlled by the propagation constant, the coefficients of cubic and quintic nonlinearity. For the quadrupole solitons, their stability is controlled by the propagation constant and the coefficient of cubic nonlinearity, rather than the coefficient of quintic nonlinearity, though there is a small effect of the quintic nonlinear coefficient on the stability. Our proposal may provide a way to generate and stabilize some novel high dimensional nonlinear modes in nonlocal system.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012008
Author(s):  
Hussein Taqi John

Abstract The paper include, the properties of the plasmonic optical fiber in which the core is beryllium metal were studied, were we studied the effect of this metal on the plasmonic fiber, and a mathematical program was used which is COMSOL MULTIPHYSICS, which depends on the finite element method (FEM) to deduce the first three modes and the effective refractive index, neff accompanying each wavelength. It was observed that when order the mode is increased, the lobes will increase, where the mode, LP 01 is one spot and the mode, LP11 are two spots and the mode, LP21 are four spots. An increase in the power indicator is increase red and yellow, and this applies to all modes. That is, by controlling the radius of the fiber core and the wavelength, it is possible to equilibrium the power ratio that propagates forward and backward. The neff , attenuation coefficient and propagation constant for different wavelengths and core radii for the first three modes were also studied. In all cases, we got the higher values when the wavelengths are small the value, and then these values begin to reduction at increasing wavelength.


2021 ◽  
Vol 23 (11) ◽  
pp. 115601
Author(s):  
Arturo Reyes-Romero ◽  
Tania Azcárate-Yáñez ◽  
A Alberto Rosas-Medina
Keyword(s):  

Research in millimeter-wave dielectric waveguides is recently experiencing high interest in efficient data communication. Generally, channel interconnect remains a challenge for high- speed links design in satellite communication. This paper presents an analysis of Polytetrafluoroethylene (PTFE) interconnect at Ku band owing to its low-cost and efficient throughput. The effect of varying PTFE properties was examined based on the wavelength, propagation constant and attenuation, in other to advise on coating and energy escape outside the Polymer Microwave Fiber (PMF).


2021 ◽  
Vol 263 (3) ◽  
pp. 3714-3719
Author(s):  
Takamasa Sato ◽  
Shuichi Sakamoto ◽  
Isami Nitta ◽  
Shunsuke Unai ◽  
Takunari Isobe ◽  
...  

In this study, we conducted theoretical analyses and experiments related to the acoustic characteristics of the situation where sound waves are incident upon the side surfaces of a group of cylinders forming a pin-holder structure. The sound-absorption coefficient, entering its clearance between cylinders through the geometrical dimension of the clearance or the physical property of gas, was calculated. In the analytical model, the gap part of the pin-holder structure was divided into elements and approximated as a gap surrounded by two parallel planes. The characteristic impedance and propagation constant of the approximate gap were obtained and treated as one-dimensional transfer matrices; the sound-absorption coefficient was then calculated using the transfer-matrix method. The calculated value was compared to that obtained in an experiment with a sample prepared using a 3D printer; the sound-absorption coefficient was measured using a 2-microphone impedance-measuring tube. We attempted to make a simple yet accurate estimation of sound-absorption coefficient using these procedures. Our theoretical values displayed a similar tendency to that obtained by experiment.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 258
Author(s):  
S. Stalin ◽  
R. Ramakrishnan ◽  
M. Lakshmanan

Nonlinear dynamics of an optical pulse or a beam continue to be one of the active areas of research in the field of optical solitons. Especially, in multi-mode fibers or fiber arrays and photorefractive materials, the vector solitons display rich nonlinear phenomena. Due to their fascinating and intriguing novel properties, the theory of optical vector solitons has been developed considerably both from theoretical and experimental points of view leading to soliton-based promising potential applications. Mathematically, the dynamics of vector solitons can be understood from the framework of the coupled nonlinear Schrödinger (CNLS) family of equations. In the recent past, many types of vector solitons have been identified both in the integrable and non-integrable CNLS framework. In this article, we review some of the recent progress in understanding the dynamics of the so called nondegenerate vector bright solitons in nonlinear optics, where the fundamental soliton can have more than one propagation constant. We address this theme by considering the integrable two coupled nonlinear Schrödinger family of equations, namely the Manakov system, mixed 2-CNLS system (or focusing-defocusing CNLS system), coherently coupled nonlinear Schrödinger (CCNLS) system, generalized coupled nonlinear Schrödinger (GCNLS) system and two-component long-wave short-wave resonance interaction (LSRI) system. In these models, we discuss the existence of nondegenerate vector solitons and their associated novel multi-hump geometrical profile nature by deriving their analytical forms through the Hirota bilinear method. Then we reveal the novel collision properties of the nondegenerate solitons in the Manakov system as an example. The asymptotic analysis shows that the nondegenerate solitons, in general, undergo three types of elastic collisions without any energy redistribution among the modes. Furthermore, we show that the energy sharing collision exhibiting vector solitons arises as a special case of the newly reported nondegenerate vector solitons. Finally, we point out the possible further developments in this subject and potential applications.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ersoy Kelebekler

Abstract Open dielectric waveguides are structures used to guide electromagnetic energy in integrated circuits above the cutoff or as leaky wave antennas propagating the energy transversely out of the waveguide in a narrow region below the cutoff. In this study, the related operating regions for the hybrid EH modes of a cylindrical dielectric rod were obtained analytically. Analyses of the leaky wave characteristics of the hybrid EH modes for various radii of the rod and various dielectric constant values were performed. The guided modes existing above the cutoff with a pure real propagation constant, and the leaky wave modes existing below the cutoff with a complex propagation constant, were obtained from the coefficient matrix of the characteristic equations system of the structure using the bisection method and Davidenko’s method, respectively. Additionally, the guided modes of the structure were obtained and designated in the light of previous studies in the literature. The results show that the frequency spectrum of the antenna mode region increases as the value of the dielectric constant and the radius of the dielectric rod decrease. In addition, a circular dielectric with a smaller radius and dielectric constant had a larger frequency spectrum in the leaky wave antenna applications.


Sign in / Sign up

Export Citation Format

Share Document