kinetic inhibition
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 2)

Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120490
Author(s):  
Hanie Mohsenzade ◽  
Shima Foroutan ◽  
Ali Dashti ◽  
Navid Ramezanian ◽  
Hadi Roosta

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2399
Author(s):  
Mohammed Hamed Alqarni ◽  
Ahmed Ibrahim Foudah ◽  
Magdy Mohamed Muharram ◽  
Nikolaos E. Labrou

Human glutathione transferase A1-1 (hGSTA1-1) contributes to developing resistance to anticancer drugs and, therefore, is promising in terms of drug-design targets for coping with this phenomenon. In the present study, the interaction of anthraquinone and diazo dichlorotriazine dyes (DCTD) with hGSTA1-1 was investigated. The anthraquinone dye Procion blue MX-R (PBMX-R) appeared to interact with higher affinity and was selected for further study. The enzyme was specifically and irreversibly inactivated by PBMX-R, following a biphasic pseudo-first-order saturation kinetics, with approximately 1 mol of inhibitor per mol of the dimeric enzyme being incorporated. Molecular modeling and protein chemistry data suggested that the modified residue is the Cys112, which is located at the entrance of the solvent channel at the subunits interface. The results suggest that negative cooperativity exists upon PBMX-R binding, indicating a structural communication between the two subunits. Kinetic inhibition analysis showed that the dye is a competitive inhibitor towards glutathione (GSH) and mixed-type inhibitor towards 1-chloro-2,4-dinitrobenzene (CDNB). The present study results suggest that PBMX-R is a useful probe suitable for assessing by kinetic means the drugability of the enzyme in future drug-design efforts.


Fuel ◽  
2020 ◽  
Vol 271 ◽  
pp. 117588 ◽  
Author(s):  
Dongfang Li ◽  
Shang Ma ◽  
Abdelatif Laroui ◽  
Yixian Zhang ◽  
Jie Wang ◽  
...  

2020 ◽  
Vol 477 (10) ◽  
pp. 1827-1845
Author(s):  
Letícia Marchese ◽  
Karel Olavarria ◽  
Brian Suarez Mantilla ◽  
Carla Cristi Avila ◽  
Rodolpho Ornitiz Oliveira Souza ◽  
...  

In Trypanosoma cruzi, the etiological agent of Chagas disease, the amino acid proline participates in processes related to T. cruzi survival and infection, such as ATP production, cell differentiation, host-cell invasion, and in protection against osmotic, nutritional, and thermal stresses and oxidative imbalance. However, little is known about proline biosynthesis in this parasite. Δ1-Pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2) catalyzes the biosynthesis of proline from Δ1-pyrroline-5-carboxylate (P5C) with concomitant NADPH oxidation. Herein, we show that unlike other eukaryotes, T. cruzi biosynthesizes proline from P5C, which is produced exclusively from glutamate. We found that TcP5CR is an NADPH-dependent cytosolic enzyme with a Kmapp for P5C of 27.7 μM and with a higher expression in the insect-resident form of the parasite. High concentrations of the co-substrate NADPH partially inhibited TcP5CR activity, prompting us to analyze multiple kinetic inhibition models. The model that best explained the obtained data included a non-competitive substrate inhibition mechanism (Kiapp=45±0.7μM). Therefore, TcP5CR is a candidate as a regulatory factor of this pathway. Finally, we show that P5C can exit trypanosomatid mitochondria in conditions that do not compromise organelle integrity. These observations, together with previously reported results, lead us to propose that in T. cruzi TcP5CR participates in a redox shuttle between the mitochondria and the cytoplasm. In this model, cytoplasmic redox equivalents from NADPH pools are transferred to the mitochondria using proline as a reduced metabolite, and shuttling to fuel electrons to the respiratory chain through proline oxidation by its cognate dehydrogenase.


2020 ◽  
Vol 16 ◽  
Author(s):  
Dang Kim Thu ◽  
Dao Thi Vui ◽  
Nguyen Thi Ngoc Huyen ◽  
Nguyen Thi Thanh Binh ◽  
Nguyen Thi Huyen ◽  
...  

Background: Huperzia phlegmaria has been used for the treatment of neurological disorder. Alkaloids are main bioactive compounds found in Huperzia phlegmaria. We aimed to investigate the acetylcholinesterase (AChE) inhibitory activity in vitro of Huperzia phlegmaria alkaloid extract (HpAE) and protective effects on mice which were induced cognitive deficits by scopolamine. Methods: AChE inhibitory activity and kinetic inhibition mechanism was investigated by Ellman's assay. Mice were administrated orally HpAE (30 mg/kg and 60 mg/kg) for fourteen days, and injected scopolamine at a dose of 1 mg/kg intraperitoneally for four days to induce cognitive impairment. The Y-maze and the Morris water maze were used for evaluating the memory behaviors. Acetylcholine (ACh) levels and AChE activity were measured in brain tissue. Glutathione peroxidase (GPx), superoxide dismutase (SOD) activities, and malondialdehyde (MDA) groups were also evaluated in the mouse brain tissues. Results: Our data showed that HpAE had the strong AChE inhibitory activity with an IC50 value of 5.12 ± 0.48 μg/mL in a concentration-dependent manner. Kinetic inhibition analysis demonstrated that HpPAE inhibited AChE followed the mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 4.37 ± 0.35 µg/mL. Scopolamine induced the cognitive impairment in Morris Water Maze and Y-maze test along with reduced brain levels of ACh and antioxidant enzyme and increased AChE activity in mouse brain tissues. Treatment with HpAE at both dose (30 mg/kg and 60 mg/kg) decreased the SCP-induced cognitive impairment in both behavioral tests along with decreased acetylcholinesterase activity and MDA level, and increased ACh level and antioxidant enzyme in mouse brain tissues. Conclusion: Our results suggested that the HpAE at both dose (30 mg/kg and 60 mg/kg) may be used for prevent and treatment of Alzheimer’s disease.


2020 ◽  
Vol 16 ◽  
Author(s):  
Michalis Platis ◽  
Dimitrios Vlachakis ◽  
Ahmed Ibrahim Foudah ◽  
Magdy Mohamed Muharram ◽  
Mohamed Hamed Alqarni ◽  
...  

Background: The 26kDa glutathione transferase (GST, EC 2.5.1.18) from Schistosoma japonicum (SjGST) is recognized as the major detoxification enzyme of S. japonicum, a pathogenic helminth causing schistosomiasis. Objective: In the present study, the interaction of the chlorotriazine dye Cibacron blue 3GA (CB3GA) and its structural analogues with SjGST was investigated. The work aimed to shine light on the non-substrate ligand-binding properties of the enzyme. Methods: Kinetic inhibition analysis, affinity labelling experiments and molecular modelling studies were employed. Results: The results showed that CB3GA is a potent inhibitor (IC50 0.057 ± 0.003μM) towards SjGST. The enzyme was specifically and irreversibly inactivated by the dichlorotriazine-analogue of CB3GA (IC50 0.190 ± 0.024 μM), following a biphasic pseudo-first-order saturation kinetics with approximately 1 mol of inhibitor per mol of dimeric enzyme being incorporated. All other monochlorotriazine analogues behave as reversible inhibitors with lower inhibition potency (IC50 5.2-82.3 μM). Kinetic inhibition studies together with molecular modelling and molecular dynamics simulations established that the CB3GA binding site overlaps both the G- and H-sites. Both hydrophobic/polar interactions as well as steric effects have decisive roles in determining the inhibitory strength of CB3GA and its analogues. Conclusion: The results of the present study might be useful in future drug design and development efforts towards SjGST.


Fuel ◽  
2020 ◽  
Vol 263 ◽  
pp. 116689 ◽  
Author(s):  
Dongyoung Lee ◽  
Woojin Go ◽  
Yongwon Seo

Sign in / Sign up

Export Citation Format

Share Document