carbon nanotube paste electrode
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 22)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Hareesha ◽  
J. G. Manjunatha

AbstractThe current study explicates the electro-oxidation behavior of formoterol fumarate (FLFT) in the presence of uric acid (UA) on the surface of poly thiazole yellow-G (TY-G) layered multi-walled carbon nanotube paste electrode (MWCNTPE). The modified (Poly(TY-G)LMWCNTPE) and unmodified (MWCNTPE) electrode materials were characterized through electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FE-SEM), and cyclic voltammetry (CV) approaches. The characterization data confirms the good conducting and electrocatalytic nature with more electrochemical active sites on the Poly(TY-G)LMWCNTPE than MWCNTPE towards the FLFT analysis in the presence of UA. Poly(TY-G)LMWCNTPE easily separates the two drugs (FLFT and UA) even though they both have nearer oxidation peak potential. The electro-catalytic activity of the developed electrode is fast and clear for FLFT electro-oxidation in 0.2 M phosphate buffer (PB) of pH 6.5. The Poly(TY-G)LMWCNTPE offered a well-resolved peak with the highest electro-oxidation peak current at the peak potential of 0.538 V than MWCNTPE. The potential scan rate and oxidation peak growth time studies show the electrode reaction towards FLFT electro-oxidation is continued through a diffusion-controlled step. The variation of concentration of FLFT in the range from 0.2 to 1.5 µM (absence of UA) and 3.0 to 8.0 μM (presence of UA) provides a good linear relationship with increased peak current and a lower limit of detection (LOD) values of 0.0128 µM and 0.0129 µM, respectively. The prepared electrode gives a fine recovery for the detection of FLFT in the medicinal sample with acceptable repeatability, stability, and reproducibility.


2021 ◽  
Vol 24 ◽  
pp. 101154
Author(s):  
P.A. Pushpanjali ◽  
J.G. Manjunatha ◽  
N. Hareesha ◽  
Edwin S D' Souza ◽  
M.M. Charithra ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 14661-14672

A poly(riboflavin) modified carbon nanotube paste electrode (PRFMCNTPE) is employed as a compatible and electrocatalytic sensor for the determination of Tyrosine (TYR). The analysis and assessment are carried out through differential pulse voltammetry (DPV) and Cyclic Voltammetry (CV). The surface of the intended sensor is examined through Field Emission Scanning Electron Microscopy (FE-SEM). The modified electrode shows the outstanding electrocatalytic effect for TYR with high selectivity and sensitivity as compared to carbon nanotube paste electrode (CNTPE). The electro-oxidation peak current of TYR and its concentration is found linear from 2 µM to 10 µM with a detection limit (LOD) of 0.45 µM. The developed sensor is productively applied for the determination of TYR in pharmaceutical samples like Tyrosine capsules. The adapted electrode shows good stability, excellent reproducibility, and remarkable sensitivity.


Author(s):  
M. M. Charithra ◽  
J. G. Manjunatha ◽  
Nagaraja Sreeharsha ◽  
Syed Mohammed Basheeruddin Asdaq ◽  
Md. Khalid Anwer

Sign in / Sign up

Export Citation Format

Share Document