central seismic gap
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John P. Pappachen ◽  
Rajesh Sathiyaseelan ◽  
Param K. Gautam ◽  
Sanjit Kumar Pal

AbstractThe possibility of a major earthquake like 2015 Gorkha–Nepal or even greater is anticipated in the Garhwal–Kumaun region in the Central Seismic Gap of the NW Himalaya. The interseismic strain-rate from GPS derived crustal velocities show multifaceted strain-rate pattern in the region and are classified into four different strain-rate zones. Besides compressional, we identified two NE–SW orienting low strain rate (~ 20 nstrain/a) zones; namely, the Ramganga-Baijro and the Nainital-Almora, where large earthquakes can occur. These zones have surface locking widths of ~ 72 and ~ 75 km respectively from the Frontal to the Outer Lesser Himalaya, where no significant surface rupture and associated large earthquakes were observed for the last 100 years. However, strain reducing extensional deformation zone that appears sandwiched between the low strain-rate zones pose uncertainties on the occurences of large earthquakes in the locked zone. Nevertheless, such zone acts as a conduit to transfer strain from the compressional zone (> 100 nstrain/a) to the deforming frontal active fault systems. We also observed a curvilinear surface strain-rate pattern in the Chamoli cluster and explained how asymmetric crustal accommodation processes at the northwest and the southeast edges of the Almora Klippe, cause clockwise rotational couple on the upper crust moving over the MHT.


2021 ◽  
Author(s):  
Anjali Sharma ◽  
Renu Yadav ◽  
Dinesh Kumar ◽  
Ajay Paul ◽  
S. S. Teotia

Sign in / Sign up

Export Citation Format

Share Document