deformable membrane
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Jinxi Li ◽  
Jason Zhang ◽  
Luozhi Zhang ◽  
Xing Bai ◽  
Zhan Yu ◽  
...  

Abstract Fourier-domain full-field optical coherence tomography (FD-FF-OCT) has the advantages of high resolution and parallel detection. However, using parallel detection can result in optical crosstalk. Toward minimizing crosstalk, we implemented a very fast deformable membrane (DM) that introduces random phase illumination, which can effectively reduce the crosstalk by washing out fringes originating from multiply scattered light. However, for one thing, although the application of DM has reduced the crosstalk problem in parallel detection to a certain extent, there will still be a lot of background noises, which may come from the circadian rhythm of the sample and multiple scattered photons. The problem could be solved by employing the adaptive singular value decomposition (SVD) filtering. We also combined SVD with the cumulative sum method, which can improve image resolution well. For the other thing, the random phase introduced by DM in the spectral domain will cause axial crosstalk after inverse Fourier transform. As far as we know, we are the first team to notice axial crosstalk and proposes that this problem can be solved by controlling the deformation range of DM. We have carried out a theoretical analysis of the above methods and verified its feasibility by simulation.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Jooyoung Park ◽  
Jeongeun Ryu ◽  
Sung Ho Park ◽  
Sang Joon Lee
Keyword(s):  

2021 ◽  
Vol 7 (19) ◽  
pp. eabe7204
Author(s):  
Haijiao Liu ◽  
Jenna F. Usprech ◽  
Prabu Karthick Parameshwar ◽  
Yu Sun ◽  
Craig A. Simmons

Mechanobiological-based control of mesenchymal stromal cells (MSCs) to facilitate engineering and regeneration of load-bearing tissues requires systematic investigations of specific dynamic mechanical stimulation protocols. Using deformable membrane microdevice arrays paired with combinatorial experimental design and modeling, we probed the individual and integrative effects of mechanical stimulation parameters (strain magnitude, rate at which strain is changed, and duty period) on myofibrogenesis and matrix production of MSCs in three-dimensional hydrogels. These functions were found to be dominantly influenced by a previously unidentified, higher-order interactive effect between strain magnitude and duty period. Empirical models based on our combinatorial cue-response data predicted an optimal loading regime in which strain magnitude and duty period were increased synchronously over time, which was validated to most effectively promote MSC matrix production. These findings inform the design of loading regimes for MSC-based engineered tissues and validate a broadly applicable approach to probe multifactorial regulating effects of mechanobiological cues.


2020 ◽  
Author(s):  
Haijiao Liu ◽  
Jenna F. Usprech ◽  
Prabu Karthick Parameshwar ◽  
Yu Sun ◽  
Craig A. Simmons

AbstractMechanobiological-based control of mesenchymal stromal cells (MSCs) to aid in the engineering and regeneration of load-bearing tissues requires systematic investigations of specific dynamic mechanical stimulation protocols. Using deformable membrane microdevice arrays paired with combinatorial experimental design and modeling, we systematically probed the individual and integrative effects of mechanical stimulation parameters (strain magnitude (STRAIN), rate at which strain is changed (RATE) and duty period (DUTY)) on myofibrogenesis and matrix production of MSCs in 3D hydrogels. These functions were found to be dominantly influenced by a novel and higher-order interactive effect between STRAIN and DUTY. Empirical models based on our combinatorial cue-response data predicted an optimal loading regime in which STRAIN and DUTY were increased synchronously over time, which was validated to most effectively promote MSC matrix production. These findings inform the design of loading regimes for MSC-based engineered tissues and validate a broadly applicable approach to probe multifactorial regulating effects of microenvironmental and mechanobiological cues.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6868
Author(s):  
Toshiaki Takahashi ◽  
Yong-Joon Choi ◽  
Kazuaki Sawada ◽  
Kazuhiro Takahashi

Disease screening by exhaled breath diagnosis is less burdensome for patients, and various devices have been developed as promising diagnostic methods. We developed a microelectromechanical system (MEMS) optical interferometric surface stress sensor to detect volatile ethanol gas at room temperature (26~27 °C) with high sensitivity. A sub-micron air gap in the optical interferometric sensor reduces interference orders, leading to increased spectral response associated with nanomechanical deflection caused by ethanol adsorption. The sub-micron cavity was embedded in a substrate using a transfer technique of parylene-C nanosheet. The sensor with a 0.4 µm gap shows a linear stable reaction, with small standard deviations, even at low ethanol gas concentrations of 5–110 ppm and a reversible reaction to the gas concentration change. Furthermore, the possibility of detecting sub-ppm ethanol concentration by optimizing the diameter and thickness of the deformable membrane is suggested. Compared with conventional MEMS surface stress gas sensors, the proposed optical interferometric sensor demonstrated high-sensitivity gas detection with exceeding the detection limit by two orders of magnitude while reducing the sensing area.


2019 ◽  
Vol 117 (10) ◽  
pp. 1870-1891 ◽  
Author(s):  
Jeffrey K. Noel ◽  
Frank Noé ◽  
Oliver Daumke ◽  
Alexander S. Mikhailov
Keyword(s):  

2019 ◽  
Author(s):  
Jeffrey K. Noel ◽  
Frank Noé ◽  
Oliver Daumke ◽  
Alexander S. Mikhailov

AbstractPeripheral membrane proteins with intrinsic curvature can act both as sensors of membrane curvature and shape modulators of the underlying membranes. A well-studied example of such proteins is the mechano-chemical GTPase dynamin that assembles into helical filaments around membrane tubes and catalyzes their scission in a GTPase-dependent manner. It is known that the dynamin coat alone, without GTP, can constrict membrane tubes to radii of about 10 nanometers, indicating that the intrinsic shape and elasticity of dynamin filaments should play an important role in membrane remodeling. However, molecular and dynamic understanding of the process is lacking. Here, we develop a dynamical polymer-chain model for a helical elastic filament bound on a deformable membrane tube of conserved mass, accounting for thermal fluctuations in the filament and lipid flows in the membrane. The model is based on a locally-cylindrical helix approximation for dynamin. We obtain the elastic parameters of the dynamin filament by molecular dynamics simulations of its tetrameric building block and also from coarse-grained structure-based simulations of a 17-dimer filament. The results show that the stiffness of dynamin is comparable to that of the membrane. We determine equilibrium shapes of the filament and the membrane, and find that mostly the pitch of the filament, not its radius, is sensitive to variations in membrane tension and stiffness. The close correspondence between experimental estimates of the inner tube radius and those predicted by the model suggests that dynamin’s “stalk” region is responsible for its GTP-independent membrane-shaping ability. The model paves the way for future mesoscopic modeling of dynamin with explicit motor function.


Sign in / Sign up

Export Citation Format

Share Document